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Effects of non‑Newtonian viscosity 
on arterial and venous flow 
and transport
Sabrina Lynch 1*, Nitesh Nama 2 & C. Alberto Figueroa 1,3

It is well known that blood exhibits non‑Newtonian viscosity, but it is generally modeled as a 
Newtonian fluid. However, in situations of low shear rate, the validity of the Newtonian assumption 
is questionable. In this study, we investigated differences between Newtonian and non‑Newtonian 
hemodynamic metrics such as velocity, vorticity, and wall shear stress. In addition, we investigated 
cardiovascular transport using two different approaches, Eulerian mass transport and Lagrangian 
particle tracking. Non‑Newtonian solutions revealed important differences in both hemodynamic 
and transport metrics relative to the Newtonian model. Most notably for the hemodynamic metrics, 
in‑plane velocity and vorticity were consistently larger in the Newtonian approximation for both 
arterial and venous flows. Conversely, wall shear stresses were larger for the non‑Newtonian case 
for both the arterial and venous models. Our results also indicate that for the Lagrangian metrics, 
the history of accumulated shear was consistently larger for both arterial and venous flows in the 
Newtonian approximation. Lastly, our results also suggest that the Newtonian model produces larger 
near wall and luminal mass transport values compared to the non‑Newtonian model, likely due to the 
increased vorticity and recirculation. These findings demonstrate the importance of accounting for 
non‑Newtonian behavior in cardiovascular flows exhibiting significant regions of low shear rate and 
recirculation.

Despite significant progress in clinical research and care, cardiovascular diseases remain the leading cause of 
death and disability  worldwide1. Advances in both experimental and computational modeling techniques have 
led to an improved understanding of basic mechanisms underlying various cardiovascular diseases. In particular, 
numerous studies have implicated altered local hemodynamic metrics (e.g., vorticity, wall shear stress (WSS), 
etc.) in the initiation and progression of thrombosis and  atherosclerosis2–4. Moreover, anatomical features such 
as aneurysms trigger complex local flow patterns, which lead to increases in residence time of biochemical 
 species5,6. Therefore, computational models for cardiovascular disease research must account for the altered 
hemodynamics in image-based geometric models, specifically in areas of recirculation likely to experience com-
plex transport phenomena.

An important aspect of a computational model is the constitutive assumption. Blood has been shown to 
exhibit shear-thinning behavior and has been described via various shear-dependent constitutive models such 
as the Carreau-Yasuda and Power-Law  models7. Nevertheless, most computational hemodynamics studies have 
treated blood as a Newtonian fluid with uniform  viscosity8–10. The use of a Newtonian assumption for blood is 
typically justified for large arteries with high shear rate flows. However, this assumption becomes questionable in 
regions exhibiting low shear rates and local flow recirculation such as aneurysmal vessels and veins. Therefore, it 
is crucial to incorporate shear rate dependent blood rheology for accurately describing the local hemodynamics 
in such cases.

Previous studies of non-Newtonian viscosity have often employed idealized vascular  geometries11, despite 
the fact that the vessel anatomy significantly impacts blood flow dynamics by triggering complex local flow 
patterns. Several other studies have investigated the effects of non-Newtonian viscosity in healthy and diseased 
arterial  models3,12. While some studies concluded that considering the shear thinning behavior of blood is 
 significant3,12–16, others reported relatively minor differences in  hemodynamics17,18. With regards to venous 
flows, most prior studies have considered a Newtonian assumption for  blood19,20, and only a few contributions 
have considered non-Newtonian  behavior21, albeit under idealized (constant) flow conditions. In addition, few 
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previous studies of non-Newtonian viscosity have investigated the influence of non-Newtonian viscosity on either 
Eulerian or Lagrangian transport  phenomena22,23, which plays a significant role in disease initiation.

Various constitutive models have been developed and calibrated against experimental data to describe the 
shear-thinning behavior of blood. Commonly used constitutive models include the Power-Law, Casson, Herschel-
Bulkley, and Carreau-Yasuda models. The Power-Law fluid model employs two constants to describe a linear 
relationship between viscosity and shear-rate on a log-log scale. This model has an analytical solution which 
makes it useful for development purposes, but the Power-Law model fails to accurately model viscosity at very 
low and high shear rates, limiting its clinical applicability. The Casson and Herschel-Bulkley models accurately 
describe blood viscosity at intermediate to high shear-rates, but fail to accurately capture blood viscosity at lower 
shear-rates. The Carreau-Yasuda model approaches asymptotic values of the effective viscosity at zero and infinite 
shear, making it more applicable for clinical  studies12.

In this work, we aimed to increase our understanding of the impact of blood rheology in complex arterial and 
venous flows, with significant regions of low shear rates. Towards that end, we implemented two different models 
of non-Newtonian viscosity within the cardiovascular hemodynamics modeling environment  CRIMSON24: (i) 
a Power-Law model and (ii) the Carreau-Yasuda model. In addition to exploring the impact of non-Newtonian 
viscosity on traditional hemodynamic metrics such as velocity and wall shear stress, we aimed to examine other 
metrics such as near-wall mass transport and Lagrangian indices of accumulated shear.

The structure of this article is as follows. In “Methods” section, we provide an overview of the governing 
equations, constitutive models, and the two methods used to study the impact of non-Newtonian viscosity on 
transport. In “Results” section, we verify our implementation of the Power-Law model against an analytical solu-
tion in an idealized cylindrical geometry. Next, we investigate the effects of non-Newtonian rheology (using the 
Carreau-Yasuda model) in two representative three-dimensional, transient, image-based scenarios: (a) a thoracic 
aortic aneurysm model, and (b) a venous model of the inferior vena cava and iliac bifurcation. In each case, we 
report the differences between in-plane velocity, vorticity, WSS, mass transport, and Lagrangian indices of shear 
between the Newtonian and Carreau-Yasuda models.

Methods
Fluid dynamics. Governing equations. The strong form of the governing equations for an incompressible 
fluid in a three-dimensional bounded domain � ⊂ R

3 is given as

where ρ is the fluid density, t is the time, u is the fluid velocity, p is pressure, f  is the external body force per unit 
volume (set to zero), and τ is the viscous stress tensor. For a Newtonian, incompressible fluid, τ is defined as:

where µ is the Newtonian viscosity and D is the rate of deformation tensor defined as:

For a non-Newtonian fluid τ can be written as:

where γ̇ refers to the shear rate defined as

and µeff(γ̇ ) is the constitutive shear rate function which describes the effective viscosity in terms of γ̇.

Constitutive models of non‑Newtonian viscosity. Various constitutive models have been developed and cali-
brated against experimental data to describe the shear-thinning behavior of blood. Table 1 presents the three 
constitutive models considered in this study and their associated parameter values, chosen from previous 
 reports3,7,25,26: (a) Newtonian model, (b) Power-Law model, and (c) Carreau-Yasuda model. The Newtonian fluid 
model employs a constant, shear-independent viscosity ( µN ). In contrast, the Power-Law fluid model employs 
two constants, a flow consistency index δ , and a flow behavior index n, to model the shear dependent blood 
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(5)τ = 2µeff(γ̇ )D,

(6)γ̇ =
√
2D : D,

Table 1.  Constitutive models and the associated parameter values.

Constitutive models Form Parameter values

Newtonian µ(γ̇ ) = µN µN = 0.0035

Power-law µ(γ̇ ) = δγ̇ n−1 δ = 0.0147, n = 0.7755

Carreau-Yasuda µ(γ̇ ) = µ∞ + (µ0 − µ∞)
(

1+ (�γ̇ )a
)

n−1
a µ∞ = 0.0035, µ0 = 0.16, � = 8.2, n = 0.2128, a = 0.64
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viscosity. Lastly, the Carreau-Yasuda model employs five constants: a relaxation time � , power indices n and a, 
and asymptotic values of the effective viscosity µ(γ̇ ) , µ0 and µ∞ , at zero and infinite shear-rates, respectively.

The behavior of these three models for different shear rates is plotted in Fig. S1 of the Electronic Supple-
mentary Information. The Power-Law model displays a linear response with a constant slope given by the flow 
behavior index n on a log-log scale. Values of n > 1 imply shear thickening behavior while values of n < 1 imply 
shear-thinning behavior. Conversely, the Carreau-Yasuda model is characterized by constant values of viscosity 
in both the low ( µ0 ) and high ( µ∞ ) shear-rate limits. Between these limits, the viscosity varies in a nonlinear 
manner on the log-log scale.

Transport analysis. A significant goal of this work is to understand the impact of non-Newtonian rheology 
on mass transport. Towards that goal, we considered two separate approaches to assess mass transport within a 
given flow field: (i) Lagrangian particle tracking, and (ii) Mass transport via advection-diffusion (AD).

Lagrangian particle tracking. The Navier-Stokes equations are typically solved in fixed Eulerian formulations. 
Consequently, the solution fields (velocity and pressure) do not directly provide insights on the path of particles 
traversing through the flow field. In contrast, a Lagrangian representation of a flow field can be used to describe 
the path, history of hemodynamic stresses, and residence time experienced by a particle in certain parts of the 
vasculature. In blood flow, constituents such as platelets are small enough in size to be reasonably approximated 
by massless particles advected by the flow. The path and the history of stress of these particles are important 
quantities to study processes such as platelet mechanical activation, a key process in thrombus  formation2,27. 
Therefore, in this work, we considered a Lagrangian particle tracking method derived from the Eulerian solution 
fields to assess the cumulative shear experienced by massless  particles2,28. Specifically, we introduced a number 
of particles with prescribed initial positions and integrated their Lagrangian trajectories from the Eulerian flow 
field solution using a fourth-order Runge-Kutta scheme. This Lagrangian tracking allowed us to assess the ‘plate-
let activation potential’ (PLAP), a metric that has been linked to thrombus formation in thoracic and abdominal 
aortic  flows2,29. PLAP is a non-dimensional scalar index that represents the magnitude of shear rates that a par-
ticle accumulates while traveling through the fluid domain and is defined as

where |D(x(t̃), t̃)| is the Frobenius norm of the symmetric part of the spatial gradient of the velocity tensor, t is 
the current time, and T indicates how long the particle has been tracked.

Scalar mass transport via advection‑diffusion (AD). Eulerian formulations have also been widely used to study 
the mass transport of proteins or other chemical species in cardiovascular flows, in particular for thrombosis 
 research25,30,31. In this approach, scalar AD equations are solved to obtain the spatio-temporal distribution of the 
concentration of the species. The strong form of the AD equations for mass transport in a three-dimensional 
bounded domain � ⊂ R

3 is given as

where i = 1, ..., number of scalars and ci , Di , and ri refer to the concentration, diffusion coefficient, reaction 
term(s) for the scalar i.

Given our interest in understanding the impact of blood rheology on velocity, in this work, we focused our 
attention on the advective component of scalar AD transport equations (Eq. 8), assuming a constant diffusivity 
throughout the entire flow field. Towards that goal, we prescribed concentrations of species through the inlet 
face(s) of the computational model under two different constitutive assumptions (Newtonian and Carreau-
Yasuda), and solved the spatio-temporal concentration fields, to study potential discrepancies in mass transport 
in the lumen and near the vessel wall. Details of the scalar AD formulation used in this article can be found 
 elsewhere32.

Patient‑specific models and boundary conditions. Two patient-specific geometries were consid-
ered: (i) a thoracic aortic aneurysm model, and (ii) a venous model of the inferior vena cava and iliac veins. 
Approval was obtained from the institutional review board (HUM00155491). To ensure a consistent compari-
son between the Newtonian and Carreau-Yasuda models, the parameter values listed in Table 1 were adopted. 
Specifically, following Marrero  et al.17, the parameter µ∞ was chosen to match the Newtonian viscosity 
( µ∞ = µN = 0.0035 Pa s ). Therefore, both the Newtonian and Carreau-Yasuda models yield the same effective 
viscosity in the high shear rate limit. At low shear rates, the Newtonian model exhibits lower viscosity. Blood 
density was 1060 kg/m3 for both models.

Arterial model. A patient-specific thoracic aortic aneurysm model was generated from computed tomography 
angiography (CTA) image data using  CRIMSON33. Figure 1 (left panel) shows the computational domain, con-
sisting of the ascending and proximal descending aorta and 9 outlet branches, and a schematic of the boundary 
conditions. An echocardiography-derived periodic flow waveform (time period T = 0.91 s ) was mapped to a 
parabolic velocity profile, and prescribed as the inflow condition at the inlet face of the aortic model. This cor-
responds to a maximum Reynolds number of approximately Remax = 2.1× 103 (based on Newtonian blood 

(7)PLAP(x, t) =
∫ t

t−T
|D(x(t̃), t̃)|dt̃,

(8)
∂ci

∂t
+ u · ∇ci −∇ · (Di∇ci) = ri in � for i = 1, ..., number of scalars,
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viscosity value). Three-element Windkessel  models34 were prescribed at the outlet faces with parameters listed 
in Table S1 of Electronic Supplementary  Information8. A zero velocity boundary condition was prescribed on 
all walls.

Several meshes with increasing levels of refinement were considered. A mesh with 22 million linear tetra-
hedral elements and 3.9 million nodes was ultimately chosen to adequately capture flow recirculation in the 
aneurysmal region. Cycle-to-cycle periodicity was achieved after four cardiac cycles, corresponding to a physical 
time of t = 3.64 s.

Venous model. A patient-specific venous model was generated from CTA image data using  CRIMSON33. Fig-
ure 1 (right panel) shows the computational domain, consisting of the: inferior vena cava (IVC), left common 
iliac vein (left CIV), left internal iliac vein (left IIV), left external iliac vein (left EIV), right common iliac vein 
(right CIV), right internal iliac vein (right IIV), and right external iliac (right EIV) vein , and a schematic of the 
boundary conditions. The venous geometry was scaled to match literature diameters values of the IVC and iliac 
veins.

Measurements of velocity were obtained at the IVC, common, and external iliac veins using duplex Doppler 
ultrasonography. Average flow values were calculated based on the mean velocity and diameter values obtained 
from the CTA. Internal iliac vein flows were deduced from the difference between the common and external iliac 
flows. A period of T = 0.8 s was utilized for all waveforms, which were mapped to a parabolic velocity profiles 
prescribed at the 4 inlet vessel faces of the model (e.g., external and internal iliac veins), resulting in a maximum 
Reynolds number of approximately Remax = 405 (based on Newtonian blood viscosity value). A three-element 
Windkessel model was applied to the IVC outlet face with parameters listed in Table S2. A zero velocity bound-
ary condition was prescribed on all walls.

Several meshes with increasing levels of refinement were considered. Reported results correspond to a 
mesh consisting of 2 million nodes and 12.5 million linear tetrahedral elements. Cycle-to-cycle periodicity was 
achieved after four cardiac cycles, corresponding to a physical time of t = 3.2 s.

Figure 1.  Computational domains of the patient-specific arterial model (Left) and venous model (Right). 
Inflow and outlet boundary conditions are specified as either a prescribed inflow waveform or reduced order 
Windkessel model.
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Results
Verification of power‑law implementation. To verify our implementation of the shear-dependent 
non-Newtonian viscosity models, we compared the numerical results for the Power-Law model against an 
analytical solution in an idealized cylindrical geometry. To this end, we considered a cylindrical domain with 
diameter d = 40.0 mm and length l = 200.0 mm . Using a Power-Law constitutive model, a steady flow solution 
was obtained by prescribing a constant flow rate of 833.33 mm3/s mapped to a Poiseuillle parabolic velocity 
profile at the inlet, with a maximum centerline velocity vmax = 1.3 mm/s and a maximum Reynolds number 
Remean = 8.0 . No-slip and zero traction boundary conditions were prescribed on the lateral wall and the outlet 
face, respectively.

Our numerical implementation was observed to be in excellent agreement with the analytical Poiseulle profile, 
as shown in Fig. S2 of the Electronic Supplementary Information.

Patient‑specific hemodynamic analysis. In this section, diastolic solutions for velocity, vorticity, and 
WSS are discussed for both the Newtonian and Carreau-Yasuda constitutive laws, for the arterial and venous 
models. Vorticity is defined as the curl of the velocity field ( ω = ∇ × u ) and describes the local spinning motion 
of the fluid. To provide a quantitative comparison between solutions, surface (in-plane velocity and WSS) or 
volume (vorticity) averages of the solution fields are calculated at four locations: mid-aneurysm (section A) and 
distal aorta (section B) for the aortic model, and IVC (section C) and left common iliac vein (section D) for the 
venous model. Furthermore, to study the differences between solutions on a point by point basis, we define a 
relative difference metric as:

where �·� denotes the L2 norm of an Eulerian field, and ‖Carreau Yasuda‖ is a reference mean value of the 
Carreau-Yasuda solution, calculated for each slice of the in-place velocity, and for the shaded regions in the 
ascending aorta and IVC for the vorticity and WSS (see Figs. 3 and 4). This reference mean value defines a suit-
able norm to study relative differences for each solution field between Newtonian and Carreau-Yasuda  models2.

In‑plane velocity. Figure 2 shows contour plots of the in-plane velocity magnitude and bar plots of mean in-
plane velocity. In the arterial model, larger mean values of in-plane velocities are observed in the Newtonian 
model, with larger discrepancies between models seen in section B (Section A: 10.6% and Section B: 70.3% ). 
Larger relative differences in in-plane velocity magnitude are also observed in section B with relative differences 
of up to 7.5. In the venous model, similar patterns are observed: larger mean in-plane velocities are obtained with 
the Newtonian model (Section C: 56.2% and Section D: 15.5% ), and larger relative differences in in-plane veloc-

(9)Relative Difference =
�Newtonian-Carreau Yasuda�

�Carreau Yasuda�
,

Figure 2.  Arterial and venous in-plane velocity in diastole. (Left) Contour plots of in-plane velocity magnitude 
for the Newtonian and Carreau-Yasuda models, and relative difference between the two, at four representative 
locations. (Right) Bar plots of mean values for each location.
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Figure 3.  Arterial and venous vorticity in diastole. (Left) Volume rendering plots of vorticity magnitude for 
the Newtonian and Carreau-Yasuda models, and relative difference between the two. (Right) Bar plots of mean 
values for four representative locations (A–D).

Figure 4.  Arterial and venous WSS in diastole. (Left) Contour plots of WSS magnitude for the Newtonian 
and Carreau-Yasuda models, and relative difference between the two. (Right) Bar plots of mean values for four 
representative locations (A–D).
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ity magnitude are seen in Section C. (Max. Relative Difference 2). Due to the smaller pulsatility and lower flow 
in the venous model, smaller values of in-plane velocity are obtained (max. in-plane velocity 27 mm/s) relative 
to the arterial model (max. in-plane velocity 175 mm/s).

Vorticity. Figure 3 shows volume rendering plots of vorticity magnitude and bar plots of mean vorticity. More 
vortical structures are apparent in the Newtonian solution for both the arterial and venous models, with a maxi-
mum relative difference of 3.0 in the arterial and 1.0 in the venous model. Mean vorticity is larger in all four 
locations for the Newtonian model, ranging from 10.5% in the IVC (Section C) to 36.9% in the descending aorta 
(Section B). Due to the lower pulsatility of the venous flow, smaller values of vorticity are obtained in the venous 
model (max. vorticity 30 s−1 ) relative to the arterial model (max. vorticity 50 s−1).

Wall shear stress. Figure 4 shows contour plots of WSS magnitude and bar plots of mean WSS. In the arterial 
model, mean WSS is smaller in the Newtonian solution (18.4% smaller in the mid-aneurysm and 7.0% smaller in 
the descending aorta) in both the aneurysm and descending thoracic aorta. For the venous model, smaller values 
of WSS are also obtained with the Newtonian solution (26.4% smaller in the IVC and 25.6% smaller in the left 
common iliac vein). Larger relative differences are observed in the arterial model (2.0 for the arterial model vs. 
0.6 for the venous model). Due to the smaller pulsatility of the venous flow, smaller values of WSS are obtained 
in the venous model (max. WSS 0.10 Pa) relative to the arterial model (max. WSS 0.50 Pa). The observed venous 
WSS values are in line with the infrarenal IVC venous WSS values reported in Cheng et al. 0.2± 0.06 Pa for 
healthy  individuals35, although slightly below their reported range.

We remark that the reported trends in in-plane velocity, vorticity, and WSS are consistent throughout the 
cardiac cycle for each model, and not just in diastole.

Regions of critical shear rate. Lastly, regions of high viscosity and low shear rate in the Carreau-Yasuda model 
are identified through an arbitrary threshold of viscosity: ( µ ≥ µcritical = 0.01 Pa.s = 3µN ), see Fig. 5, for both 
the arterial and venous models in diastole. These are the regions where the non-Newtonian effects can be con-
sidered to have the most impact on the solution fields.

A few areas of increased viscosity can be identified in the aneurysmal and descending aortic regions, as well 
as in the head and neck vessels of the aortic model. In contrast, the venous model shows extensive regions of 

Figure 5.  (A) Maps of viscosity and shear rate obtained with the Carreau-Yasuda model in the regions of the 
computational domain where the viscosity is greater than the critical threshold ( µ ≥ µcritical) . These are regions 
where the non-Newtonian effects are most important. (B) Critical viscosity is defined by µcritical = 3µN.
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elevated viscosity and low shear rate throughout the entire model, except in the near wall regions. In the arterial 
model, regions of low shear rate are expected in the aneurysmal region, but it is interesting to also observe those 
regions in the descending aorta, where the aortic diameter is normal. In the venous model, widespread areas 
of low shear rate emphasize the need to consider non-Newtonian viscosity models when studying problems on 
the large veins.

Patient‑specific transport analysis. The transport of biochemical species such as proteins, platelets and 
chemical signaling species plays a significant role in the initiation and propagation of various cardiovascular 
diseases such as thrombosis and  atherosclerosis25,36,37. We studied the impact that the choice of constitutive law 
has on two different models of transport: Lagrangian particle tracking, and scalar advection-diffusion (AD) 
equations in both anatomical models.

Lagrangian particle tracking. Approximately one million massless particles were injected into the arterial and 
venous anatomical models and tracked for ten cardiac cycles. For the arterial model, a single bolus was released 
at the ascending thoracic aorta. In the venous model, four boluses of approximately 250,000 particles each were 
released at the left EIV, left IIV, right EIV, and right IIV. Particles were tracked as they were passively advected 
through each computational domain over time and collected at the outflow faces. Statistics on PLAP and the 
number of particles were recorded.

Figure 6A,D shows the particles remaining in the arterial and venous models after ten cardiac cycles. Mean 
PLAP values in both models are larger in the Newtonian analysis compared to the Carreau-Yasuda, see Fig. 6B,E.

Figure 6C,F show the total number of particles inside the anatomical domains over time. Particles leave the 
domains at different rates due to differences in viscosity. Interestingly, particles leave the domains at a slower 
rate in the Newtonian model. This is likely due to the increased vorticity of the flow in the Newtonian simula-
tion, see Fig. 3. The pulsatility of the arterial flow is apparent in panel C, where we observe that non-Newtonian 
viscosity is more important during diastole (flat portions of the curve). After t = 3.64 s, the differences between 
Newtonian and Carreau-Yasuda simulations are apparent throughout the entire cardiac cycle. For the venous 
model (panel F), particles leave the domain at a relatively constant rate due to the smaller pulsatility of the flow.

Scalar mass transport via advection‑diffusion (AD). Next, we perform a scalar AD mass transport analysis 
using our previously implemented numerical framework within  CRIMSON32. For all mass transport simula-
tions, we investigate the spatio-temporal evolution of species injected through the inlet face(s) of the computa-
tional domains. The goal is to understand whether the choice of blood constitutive model renders differences 
in the lumen and near-wall scalar concentration field(s), since it is well known that initiation and propaga-
tion of numerous cardiovascular diseases (e.g., thrombosis, atherosclerosis, etc.) are influenced by near-wall 
 transport36–38. An initial concentration of c = 0 mol/mm3 is assumed for all species and a constant concentra-

Figure 6.  (A,D) Particles left in the arterial and venous computational domains for Newtonian and Carreau-
Yasuda simulations. (B,E) Box and whisker plot describing the particles left in the domains. (C,F) Line plots 
describing the number of particles in the computational domains over time.
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tion of c = 10 mol/mm3 is prescribed at the inlet face(s) for each species. A zero total flux boundary condition is 
prescribed at all walls while a consistent flux boundary condition is prescribed at the outlet face(s)32. A constant 
diffusion coefficient D = 1.0mm2/s is used for all species.

Figure 7A shows the arterial computational domain with four locations (i)–(iv) highlighted along the aorta. 
Figure 7B shows a qualitative comparison between volume rendered plots of scalar concentration for the New-
tonian and Carreau-Yasuda solutions during diastole. Larger discrepancies between scalar fields are apparent 
within the aneurysmal region and descending aorta. Figure 7C shows warp plots of luminal scalar concentra-
tion at locations (i)–(iv). For each location, We report the average value of the scalar concentration, as well as 
a tortuosity index ψ , defined as the ratio of the surface area of the warp plot over the luminal surface area. The 
Newtonian model produced larger mean values of scalar concentration for all four locations, with the largest 
differences observed in locations (ii) and (iii), the farthest away from the boundaries. Furthermore, the tortuosity 
index was larger for the Carreau-Yasuda model in all locations except the near outlet location (iv). This points 
to a larger heterogeneity in the scalar field, with many more ups and downs in the solution, despite the overall 
lower mean values of scalar compared to the Newtonian case.

Lastly, Fig. 7D shows near-wall scalar concentration for the Newtonian and Carreau-Yasuda solutions at 
locations (i)–(iv). The scalar concentration is plotted against an angular position describing the location along 
the aortic wall. Significant differences are observed in the concentration profiles at location ii (7.8 vs. 6.8 mol/
mm3, 14.7%). Equivalent mean concentration values were obtained at the ascending and descending aorta (dif-
ference < 1%) and minor differences (6.3%) were observed at the distal aneurysm. In both the proximal and 
distal aneurysm the mean scalar concentrations are lower in the Carreau-Yasuda solution along the majority of 
the vessel wall, resulting in lower mean values compared to the Newtonian solution.

Figure 8A shows the venous anatomical model with three highlighted locations at which a detailed analysis 
of the different concentration fields cj is performed: (i) IVC, (ii) left CIV, and (iii) right CIV. Figure 8B shows 
volume rendered plots of scalar concentrations for the Newtonian and Carreau-Yasuda solutions in diastole. 
Figure 8C shows contour plots of scalar concentration for each species at the three locations highlighted in Panel 
A. The plot at the IVC (i) shows mixing of the four scalars with significant qualitative differences between the 

Figure 7.  (A) Arterial computational domain highlighting four locations (i–iv) along the aortic arch. (B) 
Volume rendering of the scalar field for the Newtonian and non-Newtonian solutions after three cardiac cycles 
(time t = 2.92s ). (C) Warp visualization of the scalar field at locations (i–iv). (D) Scalar concentration along the 
aortic wall at locations (i–iv) for Newtonian and non-Newtonian solutions.
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Newtonian and Carreau-Yasuda solutions. The Carreau-Yasuda solution is characterized by smoother, more dif-
fused concentration profiles. This finding is consistent with the higher viscosity in the Carreau-Yasuda solution 
at lower shear rates which diffuses gradients in the flow field. The concentration plots at the left and right CIV 
(ii, iii) also show subtle qualitative differences. For both solutions, it is interesting to observe that the anterior 
aspect of the IVC wall is predominantly perfused by scalars transported from the left side (left EIV and left IIV) 
and the posterior aspect by scalars originating on the right side (right EIV and right IIV).

Lastly, Fig. 8D compares the concentration of the Newtonian and Carreau-Yasuda solutions along the IVC 
wall for each scalar species injected at the left EIV, right EIV, left IIV, and the right IIV . The scalar concentra-
tion is plotted against an angular distance describing the location along the IVC wall. Significant differences in 
wall concentration for each scalar are observed, ranging from 10.7% for the Left EIV , to 64.0% for the Left IIV 
. Interestingly, the mean value of the Carreau-Yasuda solution is lower than that of the Newtonian solution for 
every location except the Right IIV. This is likely due to the decreased vorticity (seen in Fig. 3) and the decreased 
residence time (see Fig. 6) of the Carreau-Yasuda solution.

Discussion
Despite the long-standing knowledge of the shear thinning behavior of blood, computational studies have typi-
cally assumed a shear-independent Newtonian viscosity model for blood. While this assumption is generally 
applicable in large arteries characterized by high shear rates, it is difficult to justify in regions of vasculature 
exhibiting low shear rates such as veins and diseased arteries. Moreover, previous studies which considered 
non-Newtonian viscosity often employed idealized vascular  geometries11, despite the evident role that complex 

Figure 8.  (A) Venous computational domain highlighting three locations (i–iii). (B) Volume rendering of the 
four scalar scalar fields for the Newtonian and non-Newtonian simulations. (C) Concentration contours of 
the four scalar fields at locations (i–iii). (D) Scalar concentration along the IVC wall for Newtonian and non-
Newtonian simulations for each scalar species. All results after eight cardiac cycles (time t = 6.4 s).
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anatomical features have in altered flow patterns and have not investigated the effects of non-Newtonian viscos-
ity on transport phenomena.

The current study combines our recent advances in the modeling of cardiovascular  hemodynamics32 and 
contains several novel elements such as the use of patient-specific venous geometries, efficient stabilization 
strategies, and investigation of both Lagrangian and Eulerian metrics of flow transport. We remark that this 
study is a part of our larger ongoing effort to develop robust and efficient computational tools for cardiovascular 
hemodynamics and transport. In this paper, we set out to investigate the impact that the choice of constitutive 
model has on hemodynamic metrics (velocity, vorticity, wall shear stress) as well as transport metrics (scalar 
and Lagrangian based) for arterial and venous anatomies in which low shear and recirculation are expected.

We first implemented two shear-dependent non-Newtonian viscosity models of blood and demonstrated 
excellent agreement between profiles (Fig. S2). We note that our numerical implementation of non-Newtonian 
viscosity models was explicit (i.e., we only accounted for shear-dependent viscosity on the right-hand-side resid-
ual and not the left-hand-side linearization matrix). This explicit implementation of shear-dependent viscosity 
yielded good convergence behavior in the numerical analyses and led to minor increments in computational cost 
compared to solutions obtained with a Newtonian model. Given this implementation approach, incorporation 
of additional constitutive models will be straightforward, requiring minimal coding effort.

We then studied the effect of blood rheology in two patient-specific models which are expected to exhibit 
regions of low shear rate: a thoracic aortic aneurysm model, and a venous model of the IVC and iliac veins, see 
Fig. 1. In each case, we performed a comparative hemodynamics and transport analysis using Newtonian and 
Carreau-Yasuda viscosity models.

For the arterial model, our analysis of hemodynamic indices revealed lower in-plane velocities and vorticity 
and larger WSS in the Carreau-Yasuda solution, see Figs. 2, 3, and 4. Lower vorticity in the Carreau-Yasuda 
solution is expected since non-Newtonian models are characterized by higher viscosity and lower shear rates 
that result in larger diffusion on the flow vorticity. In the Carreau-Yasuda solution, the viscosity is sufficiently 
large to result in greater WSS.

The venous model was characterized by lower pulsatility and velocities compared to the arterial model. Our 
analysis again revealed lower velocities and vorticity (Figs. 2 and 3) and larger WSS (Fig. 4) in the non-Newtonian 
case. This observation suggests that the increased viscosity in the non-Newtonian case is sufficiently larger to 
result in higher WSS, despite the lower velocity gradients.

A Lagrangian particle tracking analysis was then performed in both the arterial and venous models to assess 
the effect of blood rheology on cardiovascular mass transport (Fig. 6). Our analysis revealed an increase in 
mean PLAP in the Newtonian case for both arterial and venous models (Fig. 6B,E). In addition, non-Newtonian 
viscosity affected the rate at which particles left the computational domain with particles leaving at a slower rate 
in the Newtonian case (Fig. 6C,F). We hypothesize that this is caused by the increased vorticity (see bar plots in 
Fig. 3) which led to particles recirculating longer before exiting the domain. Residence time and PLAP are two 
metrics that have both been linked to thrombosis  formation29,39 and this suggests that considering accurate blood 
rheological models can have a significant effect on solutions for computational cardiovascular disease models.

Lastly, in Figs. 7 and 8 our mass transport analysis revealed significant differences in the concentration fields 
between the Newtonian and Carreau-Yasuda solutions for both the arterial and the venous models. In the arterial 
model, the greatest differences in both bulk and near-wall transport were observed in the proximal aneurysm 
(location ii) where the mean near-wall concentration value differed by 14.7% and the surface area of the bulk con-
centration profile differed by 20.3%. In the venous model, the greatest differences in bulk and near-wall transport 
were observed in the IVC where the four scalars mix. Significant differences in wall concentration values were 
observed ranging from 10.7% for cj = 2 (Left EIV), to 64.0% for cj = 4 (Left IIV). Interestingly, the mean value 
of the Carreau-Yasuda solution was lower than the Newtonian solution for every location except the Right IIV. 
This is presumably due to the decreased vorticity and residence time of the Carreau-Yasuda solution, see Figs. 3 
and 6 which increases the rate at which the scalar concentration exits the domain. The differences observed both 
in the bulk domain and perhaps more importantly, in the near-wall region, again highlight the importance of 
considering non-Newtonian rheological models to obtain accurate assessment of mass transport phenomena.

The AD analysis was performed over a finite number of cardiac cycles under periodic flow conditions: 4 for 
the arterial case and 8 for the venous case. This means the solutions for the scalar field were still developing and 
had not reached a cycle-to-cycle periodic state. The reported transient scalar analysis could be relevant to study 
processes such as drug delivery and thrombosis initiation, where a finite concentration is delivered into the 
system over a relatively short period of time. Future work should address studying the effects of non-Newtonian 
viscosity on cycle-to-cycle periodic scalar mass transport solutions.

One of the primary limitations of the current study is that both the arterial and venous walls were modeled 
as rigid. The venous walls, in particular, are known to exhibit significant compliance, rendering this assumption 
as questionable. However, owing to the limited availability of vessel wall material properties and their regional 
variation, the incorporation of vessel wall compliance in patient-specific venous anatomies demands a separate 
focused effort and will be the subject of future work.

The present study is also limited to two patient-specific geometries: one arterial and one venous. Future studies 
should aim at performing similar analyses in additional patient-specific geometries to draw further conclusions 
if the trends observed are consistent among a larger patient population.

In this study, we used previously reported values of viscosities in the low and high shear rate limit for the 
Carreau-Yasuda  model3,7,25,26. However, there exist numerous other computational  studies40–42 that employed 
different values, making it difficult to compare results across studies. Therefore, better standardization and 
computational benchmarks are needed, perhaps in idealized geometries, to allow both the validation of new 
computational frameworks and the study of isolated effects of flow conditions and vessel geometry. It is also 
important to note that the Power-Law model begins to fail at both very high and low shear rates, where the 
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estimated value trends toward infinity rather than reaching a constant value as observed experimentally. This 
limits the usefulness of the Power-Law model compared to other constitutive models such as the Carreau-Yasuda.

Future studies should investigate shear-dependent rheological models in healthy arterial and/or diseased 
venous models which may have considerably fewer regions of low shear flow, as well as study other well known 
constitutive models for blood such as the Casson and Herschel-Bulkley.

Data availibility
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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