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Abstract
Pulmonary arteries constitute a low-pressure network of vessels, often characterized as a bifurcating tree with heterogeneous 
vessel mechanics. Understanding the vascular complexity and establishing homeostasis is important to study diseases such 
as pulmonary arterial hypertension (PAH). The onset and early progression of PAH can be traced to changes in the mor-
phometry and structure of the distal vasculature. Coupling hemodynamics with vessel wall growth and remodeling (G&R) 
is crucial for understanding pathology at distal vasculature. Accordingly, the goal of this study is to provide a multiscale 
modeling framework that embeds the essential features of arterial wall constituents coupled with the hemodynamics within 
an arterial network characterized by an extension of Murray’s law. This framework will be used to establish the homeostatic 
baseline characteristics of a pulmonary arterial tree, including important parameters such as vessel radius, wall thickness 
and shear stress. To define the vascular homeostasis and hemodynamics in the tree, we consider two timescales: a cardiac 
cycle and a longer period of vascular adaptations. An iterative homeostatic optimization, which integrates a metabolic cost 
function minimization, the stress equilibrium, and hemodynamics, is performed at the slow timescale. In the fast timescale, 
the pulsatile blood flow dynamics is described by a Womersley's deformable wall analytical solution. Illustrative examples 
for symmetric and asymmetric trees are presented that provide baseline characteristics for the normal pulmonary arterial 
vasculature. The results are compared with diverse literature data on morphometry, structure, and mechanics of pulmonary 
arteries. The developed framework demonstrates a potential for advanced parametric studies and future G&R and hemody-
namics modeling of PAH.

Keywords Homeostatic optimization · Growth and remodeling · Vasculature morphometry

1 Introduction

Pulmonary arterial tree is characterized by an intricate 
interplay between vessel wall structure, morphometry, and 
hemodynamics. Any anomaly such as pulmonary arterial 
hypertension (PAH) causes a significant deviation in the 
pathology from the homeostatic baseline condition, espe-
cially in the distal vasculature during the early progression 
of PAH. Briefly, the pathology of PAH effectively perturbs 
the pulmonary hemodynamics by altering the stiffness and 
resistance of the system (Hunter et al. 2008; Stacher et al. 
2012). In turn, the altered hemodynamics upset the home-
ostatic balance in the vessel wall to modulate the disease 
progression (Truong et al. 2013; Tuder 2016). Therefore, 
a coupled study of the pulmonary arterial tree morphom-
etry, hemodynamics, and vessel wall structure is essential to 
understand PAH or any other pulmonary vascular anomalies. 
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Computational frameworks that incorporate these compo-
nents can significantly enhance our understanding of the 
mechanisms underlying in any of the disease progression in 
any of the distal pulmonary arterial tree.

A crucial component of such a computational frame-
work is the identification of physiologically realistic tree 
morphometry since it defines the vascular resistance, and 
therefore significantly impacts hemodynamics. However, 
building physiologically realistic and complete morphom-
etry of the distal pulmonary arterial tree is challenging due 
to limitations in data acquisition and modeling complexity 
(Burrowes et al. 2005). Due to the complexity of branch-
ing, pulmonary arteries of any given diameter can be dis-
tributed over a wide range of diameters (Clark and Tawhai 
2018; Townsley 2012; Chambers et al. 2020; Marquis et al. 
2021; Colebank et al. 2021). In his landmark study on design 
principles of vascular networks, Murray (1926) invoked the 
idea of minimum energy consumption by the biological sys-
tems to determine the bifurcation patterns (Murray’s law). 
Specifically, he proposed that the diameter of a blood vessel 
is the result of a trade-off between the metabolic energy cost 
of maintaining blood volume in the vessel and the energy 
dissipated by viscous drag. Inspired by Murray’s law, several 
approaches have been proposed to represent the architec-
ture of vascular networks, including representation of the 
morphometry by fractal rules (Olufsen et al. 2000; Ionescu 
et al. 2009; Qureshi et al. 2014), or via a Strahler ordering 
technique to characterize the vessel connectivity (Jiang et al. 
1994; Huang et al. 1996; Tamaddon et al. 2016).

Previous computational modeling efforts have extensively 
used vascular tree models to study the hemodynamics and 
fluid–solid-interactions (FSI) in multiscale arterial networks 
(Olufsen et al. 2000; Mittal et al. 2005; Huo and Kassab 
2007; van de Vosse and Stergiopulos 2011; Qureshi et al. 
2014). However, these studies have incorporated simplified 
representations of vessel wall that do not account for con-
tributions of individual constituents of vessel wall such as 
elastin, collagen and smooth muscle cells, which is essen-
tial for study of structural changes associated with PAH. In 
addition, these studies focused on pulmonary hemodynamics 
over one cardiac cycle, thereby limiting their utility to study 
adaptations and disease progression. To truly understand 
the mechanical underpinnings of PAH, there is a need to 
develop computational models that allow long-term analysis 
of hemodynamics and FSI while integrating physiologically 
realistic tree morphometry and structurally motivated vessel 
wall models.

Another crucial component in understanding anomaly 
in pulmonary arteries is the study of the vessel wall struc-
ture and its changes over the course of any vascular disease, 
termed vascular growth and remodeling (G&R) (Ambrosi 
et al. 2011). A prominent biomechanical description of vas-
cular G&R at a constitutive level is developed in the body 

of work done by Humphrey and Rajagopal (2002) and Baek 
et al. (2007b). This approach employs a constrained mix-
ture model (Humphrey and Rajagopal 2002) to describe the 
mechanical behavior of the vessel wall. The constrained 
mixture model integrates microstructural properties and 
cellular level functions of the vessel within a continuum 
mechanics framework, where the wall constituents are con-
strained to deform together but may have distinct mechanical 
properties and stresses. Thus, this model allows one to track 
the long-term (days to weeks) evolution of the vessel wall 
by incorporating constituent (elastin, collagen, and smooth 
muscle cells) mass fractions and their synthesis and removal 
as a function of biomechanical stimuli, such as stresses (wall 
shear stress and hoop stress). The G&R modeling framework 
suggests that in healthy condition, the blood vessel wall is 
maintained in a mechanical homeostatic state determined by 
cellular mechanotransduction. Accordingly, a key factor in 
the onset of G&R is a deviation of stresses from a homeo-
static value, which is often determined by hemodynamics 
measurements on large vessels (pressure and flow). The 
homeostatic stresses, however, are not necessarily constant 
throughout an arterial network where hemodynamics signifi-
cantly vary (Guo and Kassab 2004; Pries et al. 2005). There-
fore, identifying the distal homeostatic characteristics of an 
arterial tree, morphometry, and hemodynamics is necessary 
in extending the G&R framework to arterial networks.

Finally, the coupling between the hemodynamics and 
G&R represents a temporal multiscale scenario in which 
the information must be transferred between a fast timescale 
(cardiac cycle in seconds) and slow timescale (synthesis 
and turnover of wall constitutions from days to months). 
This idea was first explored in the fluid–solid-growth (FSG) 
framework of (Figueroa et al. 2009), where the computa-
tional G&R model was coupled with hemodynamics (or 
FSI) for an individual vessel. The FSG framework proposed 
an iterative coupling between a slow-time G&R model of 
a single vessel with fast-time hemodynamics. Briefly, this 
approach assumed small deformations of the vessel wall over 
a cardiac cycle and linearized the material stiffness of the 
wall at the cycle-to-cycle averaged pressure in the intermedi-
ate configuration (Baek et al. 2007a). In turn, the hemody-
namic forces (cycle-to-cycle averaged wall shear stresses and 
pressure) from FSI modeling were used as biomechanical 
stimuli for the G&R modeling. Following similar approach, 
a formal temporal multiscale approach for pulmonary arte-
rial tree can be developed to couple the fast and slow time-
scales for computationally tractable FSG analysis.

The goal of this study is to develop a framework, namely 
homeostatic optimization, to identify the homeostatic char-
acteristics of the distal pulmonary arterial tree. Our frame-
work utilizes an extension of Murray’s law proposed by 
Lindstrom et al. (2015). Briefly, we postulate that the home-
ostatic vessel geometry and composition are determined by 
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a minimization of energy dissipation under the constraint 
of mechanical equilibrium. Therefore, by formulating a 
constrained optimization problem in each vessel combined 
with morphometry, hemodynamics, and structural data from 
literature, we establish the homeostatic characteristics of a 
pulmonary arterial tree. The future goal of this work is to 
include growth and remodeling (G&R) of the pulmonary 
arterial tree by extending the temporal multiscale analysis 
of FSG. To this end, the hemodynamics of the arterial tree 
is described using Womersley’s theory (1957) for fluid flow 
in deformable tubes, adapted to orthotropic materials and a 
bifurcating tree (Nichols et al. 2011; van de Vosse and Ster-
giopulos 2011). We must note that the focus of the current 
study is on the pulmonary arterial tree in homeostatic con-
ditions which represents an instance of our slow timescale. 
Finally, we demonstrate our framework in three application 
examples: (1) A symmetric pulmonary tree with constant 
constituent mass fractions, (2) A symmetric pulmonary tree 
with variable constituent mass fractions, and (3) An asym-
metric tree with variable constituent mass fractions.

2  Methods

2.1  Overview

In the beginning of this section, we describe the governing 
equations for the hemodynamics and fluid–solid interaction 
(FSI) in a 2D geometry of an arterial tree as shown in Fig. 1. 
We assume that the arterial network is symmetric in the 
radial direction, the equations are simplified and solved in 
1D. First, we recognize two timescales: (1) A slow time-
scale to formulate the long-term vascular adaptations and 
homeostatic maintenance, and (2) A fast timescale to for-
mulate the pulsatile nature of hemodynamics over a cardiac 
cycle. These two timescales are then coupled to formulate 
fluid–solid-growth (FSG) governing equations. The fluid 
solid interaction solution for one vessel is then extended for 
the entire geometry to solve for hemodynamics of the com-
plete arterial network. The current framework is applied to 
a normotensive pulmonary arterial tree to study instantane-
ous hemodynamics. However, the formulation will hold for 
a future extension of FSG for long-term adaptations. In the 

later part of this section, we estimate the baseline homeo-
static optimization characteristics by using an extension of 
Murray’s law for a single vessel. The energy optimization 
problem used for a single vessel homeostatic optimization 
estimation is generalized to the entire arterial network using 
an iterative process as described in Sect. 2.5. Finally, at the 
end of the methods section, we discuss the different model 
parameters introduced throughout the section with their esti-
mated values.

2.2  Fluid–solid‑growth governing equations

The mathematical description of the timescale separation 
is presented in Supplemental Materials A. Our timescale 
separation formulation provides a mathematical mean to 
justify the coupling between the fast and slow timescale 
analyses. The proposed formulation is analogous with the 
fluid–solid-growth FSG framework (Figueroa et al. 2009). 
However, a linear theory of fluid flow is used to model the 
hemodynamics.

We begin our analysis by formulating the fast and slow 
time governing systems of equations. The two systems of 
equations are one-way coupled in time (from slow to fast) 
as the result of the proposed kinematics in (Supplemental 
Materials A). This one-way coupling of slow to fast systems 
of equations using the kinematics facilitates a system of gov-
erning equations that can be solved efficiently for multiscale 
study of arterial networks.

In our formulation, superscripts s and f correspond to 
slow and fast timescales, respectively. The slow time sys-
tem describes fluid and solid equations governing the fluid 
velocity vs , pressure ps , and vessel wall displacements us , 
and the generalized 3D equations can be written as

where μ is the constant viscosity of blood, Ps
solid

 is the aver-
aged first Piola–Kirchhoff stress tensor, and bs is an averaged 
body force vector. The fluid flow solution to the slow-time 
system of Eq. (1) in a 1D artery (Fig. 1) can be presented 
by Poiseuille law

(1)
∇

x
⋅ v

s = 0, ∇
x
ps = �∇2

x
v
s,

0 = ∇
x
⋅ P

s
solid

(us) + b
s,

Fig. 1  Schematic represen-
tation of the arterial tree, 
hemodynamic constraints at the 
bifurcation and the cost function 
optimization in a single vessel
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where qs is the steady-state flow rate, Δps is the steady-state 
pressure drop along the vessel, R is the vessel lumen radius, 
and L is the vessel length. The equilibrium equation for the 
vessel wall in (1) can be reduced to Laplace law for the 
cylindrical membrane, subjected to the distension pressure 
ps (Supplemental Material B)

where wall tension T��||s is computed by a constrained mix-
ture model of the vessel.

The fast time system describes fluid and solid equations 
that define the fast time fluid velocity vf  , pressure pf  , and 
displacements uf  which oscillate around at a given slow 
time state. The generalized 3D governing system of equa-
tions can be expressed as

where �f luid and �solid are the blood and wall density, respec-
tively. The first Piola–Kirchhoff Pf

solid

|||s is defined as a line-
arization of the constrained mixture model at a given slow 
time state s, and bf  is the body force vector. The solution to 
the fast-time system of Eq. (4) in an artery can be described 
by Womersley’s theory of the oscillatory flow in deformable 
tubes (Womersley 1957). This theory provides an analytical 
solution (Filonova et al. 2020) for the fast-time periodic vari-
ables at a given frequency �

where qf  is the fast-time flow rate, vfz is the fast-time longi-
tudinal velocity, and P and Q are fast-time pressure and flow 
in the frequency domain, z is a coordinate along the longi-
tudinal axis of the vessel. The solution is expressed via Bes-
sel functions of the first kind J0 , J1 , g = 2J1

�⋀�
∕
⋀

J0
�⋀�

 , 
j = J0

�⋀
r

R

�
∕
⋀

J0(
⋀
) , and 

⋀
= i3∕2�Wom with the Womer-

sley number defined as �Wom = R
√
��f luid∕�.

In the current study we consider the orthotropic mem-
brane stiffness, and therefore, accordingly the pulse wave 
velocity relation from Womersley’s solution has been 
accordingly modified.

Pulse wave velocity is an important clinical factor in 
monitoring the systemic and pulmonary hypertension. The 

(2)qs =
�R4Δps

8�L
,

(3)T��
||s = psR,

(4)
∇

x
⋅ v

f = 0, �fluid
�vf

�t

||||x
= −∇

x
pf + �∇2

x
v
f ,

�solid
�2uf

�t2

||||x
= ∇

x
⋅ P

f

solid

|||s + b
f ,

(5)
pf = Pe

i�
(
t−

z

c

)

, qf = Qe
i�
(
t−

z

c

)

,Q =
�R2P

c�fluid
(1 − g),

vf
z
=

P

c�fluid
(1 − j)e

i�
(
t−

z

c

)

pulse wave velocity c can be computed using Womersley’s 
solution.

The total pressure p and flow rate q in the time domain 
are obtained by applying Fourier series to the solutions (5) 
for multiple frequencies �n = 2�n∕T  superimposed by the 
slow-time solution (2) and (3) at zero frequency

where Pn and Qn are frequency dependent coefficients of 
oscillatory fields. Once the pressure and flow are known, 
we can compute the hydraulic resistance Res and character-
istic impedance of the vessel Zc(�) using the relations from 
Eqs. (2), (5) and (6).

where A��
||s is the circumferential component of the stiffness 

tensor for a vessel (Supplemental Materials A & H) (Filo-
nova et  al. 2020). We must note that the characteristic 
i m p e d a n c e  i n  t h e  t i m e  d o m a i n  i s 
zc = ps(0)∕qs + Res +

∞∑
n=1

Zc
n
eiwnt . Similarly, we can compute 

the input impedance Zinp(�) = P∕Q|z=0 and terminal imped-
ance ZT (�) = P∕Q|z=L of the vessel.

2.3  Hemodynamics in an arterial tree

The fluid–solid interaction solution of one vessel is extended 
to an entire arterial tree. We consider the pulmonary arterial 
network as a 1D bifurcating tree (as shown in Fig. 1), where 
each vessel can be characterized by a radius and length. 
Following the previous section, the total hemodynamics 
is the summation of the slow-time and fast-time hemody-
namics. The slow-time hemodynamics in the arterial tree 
is computed using Poiseuille flow for each vessel, the flow 
conservation and pressure continuity for each bifurcation, 
and boundary conditions at the tree inlet and outlets (Sup-
plemental Materials C). Given the arterial tree morphometry 
and linearized vessel wall stiffnesses, we can compute the 
fast-time hemodynamics using Womersley’s solution.

First, at each bifurcation of the arterial tree we decom-
pose the fast-time pressure and flow to forward and back-
ward (reflection) waves

(6)c =

√
(1 − g)hA��

||s
2R�fluid

.

(7)p = ps +

∞∑

n=1

Pne
i�n(t−z∕cn), q = qs +

∞∑

n=1

Qne
i�n(t−z∕cn),

(8)
Zc(�) =

P

Q
=

c�fluid

�R2(1 − g)
=

1

�R2

√
h�fluidA��

||ps
2R(1 − g)

,

Res =
Δps

qs
=

8�L

�R4
,
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with constant coefficients Hforw and Hback for individual har-
monics. The characteristic impedance Zc and pulse wave 
velocity c are the same for both forward and backward waves 
(van de Vosse and Stergiopulos 2011). Therefore, we define 
the reflection coefficient Γ at the end of an individual vessel 
as (Taylor 1957; Avolio 1980)

The reflection coefficient Γ varies between -1 and 1 
with Γ = 0 indicating no wave reflection in the vessel, 
i.e., matching impedance ZT = Zc . Specifically, Γ = −1 and 
Γ = 1 represent open-end type (or negative) and closed-end 
type (or positive) wave reflections, respectively. Next, the 
impedance along each vessel can be expressed as 

In addition, the oscillatory pressure and flow along the 
vessel using (9) and (10) can be written as

Each bifurcation is characterized by a parent vessel and 
two daughter vessels. Considering the conservation of flow 
and pressure continuity at each bifurcation, we obtain the 
terminal impedance (z = L) in the parent vessel

where the input impedance for each daughter vessel is com-
puted from (11) by setting z = 0

Given the flow at the root vessel and the terminal pres-
sure and reflection coefficient at the outlets, we use the 
bifurcation relation (13) to compute the input impedance 
(14) and reflection coefficient (10) from bottom-to-top. 
Finally, we can reconstruct the pressure and flow at each 
vessel of the tree from top-to-bottom, using (12). The 

(9)

P = Pforw + Pback, Pforw = Hforwe
−i�z∕c, Pback = Hbacke

i�z∕c

Q = Qforw + Qback, Qforw =
Hforw

Zc
e−i�z∕c, Qback = −

Hback

Zc
ei�z∕c

(10)Γ =
ZT − Zc

ZT + Zc
=

Pback

Pforw

||||z=L
.

Γ =
Hback

Hforw

e
i�2L

c

(11)Z(z,�) =
P

Q
(z,�) =

Pforw + Pback

Qforw + Qback

= Zc 1 + Γe
i�2(z−L)

c

1 − Γe
i�2(z−L)

c

(12)
P(z,�) = Hforwe

−i�z∕c(1 + Γei�2(z−L)∕c), Q(z,�)

=
Hforw

Zc
e−i�z∕c(1 − Γei�2(z−L)∕c).

(13)ZT
p
=

(
1

Z
inp

d1

+
1

Z
inp

d2

)−1

,

(14)Zinp = Zc 1 + Γe−i�2L∕c

1 − Γe−i�2L∕c
.

algorithmic details of the solution are given in Supple-
mental Materials D.

2.4  Homeostatic optimization

In this section, we describe a method to estimate the homeo-
static baseline characteristics of an entire arterial tree (as 
shown in Fig. 1) based on an extension of Murray’s law 
that integrates the mechanics of vessels. The proposed opti-
mization is an energy-based minimization problem that 
integrates morphometry, hemodynamics, and individual 
vessel mechanics essentially operates at the slow timescale. 
Therefore, the optimization constraints include the slow-
time hemodynamics solution and Laplace law (Sect. 2.2). 
In this work, the morphometry of the tree is described by 
the generation number, where the most proximal vessels is 
considered generation 1, and each bifurcation increments the 
generation number by 1. Upon solving the energy minimi-
zation problem, the homeostatic radii distribution over the 
pulmonary arterial tree can be determined for each genera-
tion of the arterial tree.

Following the study by Lindström et  al. (2015), we 
assume that the blood vessel wall composition and geom-
etry strive to optimize the energy consumption. This energy 
consumption includes the metabolic demand for maintaining 
the volume of the blood in a vessel and the power needed to 
overcome hydraulic resistance. In addition, we must account 
for the metabolic demand for the maintenance (synthesis and 
removal) of vessel wall constituents. We assume that the 
homeostatic state is governed by such an optimization rule 
that can be defined for each individual vessel.

The formulation of the optimization problem is as fol-
lows. First, the metabolic power needed for blood supply is 
proportional to the blood volume that needs to be sustained, 
with a factor �blood . This metabolic power per unit length can 
be written as Cblood = �blood�R2 , and R is the vessel radius 
in homeostatic conditions. Second, the power per unit length 
needed to overcome the resistance of Poiseuille flow (vis-
cous drag forces) is Cdrag = 8�qs2∕(�f luid�R

4) . Third, the 
metabolic energy cost is assumed to be proportional to the 
mass of each vessel wall constituent Cwall = (

2�R

�solid
)
∑

i �
iMi

R
 , 

where Mi
R
  is the mass per unit reference area of each con-

stituent with i ∈ {el, smc, col} representing elastin, smooth 
muscle cells (SMCs), and collagen fibers, respectively. The 
constants �i  are the metabolic energy cost of the vessel wall 
constituents. The metabolic cost of smooth muscle cells 
(SMC) �smc includes the metabolic cost of maintenance 
�smc
maint

 and active tension �smc
act

 (Lindström et al. 2015). Col-
lectively, the total energy cost per unit length for an indi-
vidual blood vessel can be written as
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The energy cost function in (15) has to be minimized with 
the mechanical equilibrium, represented by Laplace law, as 
a constraint. First, we rewrite Laplace law in terms of the 
mass of vessel wall constituents. Accordingly, we define the 
total mass as Mtotal

R
 and mass fractions of elastin, SMCs, and 

collagen fibers as �el = Mel
R

/
Mtotal

R
 , �smc = Msmc

R

/
Mtotal

R
 , and 

�col =
∑
k

�k , respectively, with k-th collagen-fiber-family 

mass fraction �k = Mk
R

/
Mtotal

R
 . The circumferential mem-

brane stress T�� can be written as (Supplemental Materials 
B):

where the parameter �f  is the volume fraction of the intersti-
tial fluid, usually taken as 0.7. The �� and �z are the circum-
ferential and axial stretches, respectively, which correspond 
to stretches mapping from a reference configuration to the 
current configuration (Supplemental Materials B). The cir-
cumferentially acting �i

�
 part of the Cauchy stress tensor �i 

is defined as

where hi is the effective thickness of each constituent in 
the vessel wall. We must note that the total thickness of 
the arteries h is defined as the sum of the constituent-wise 
thicknesses. Variations in hemodynamics under physiologi-
cal conditions change the vessel wall stresses which leads 
to adaptive responses from the vascular wall cells (endothe-
lial cells, SMCs, and fibroblasts). In the homeostatic state, 
however, the stress of each constituent �i

�
 is determined by 

the stretch at which the constituents are deposited, namely 
prestretches. Accordingly, we assume that the reference con-
figuration in our model is the homeostatic configuration. 
Therefore, to evaluate vascular tension in the homeostatic 
condition we must set �� = �z = 1 . Substituting (16) to 
Laplace law (3), we obtain the constraint

The pressure ps in a single vessel is not constant, there-
fore ps is the mid-vessel pressure which is the mean of 
the inlet and terminal pressure of a single vessel. On the 
other hand, flow qs in a single vessel is constant which is 
the same as the mean blood flow in the vessel. Finally, 
embedding the constraint into the metabolic cost function 

(15)
C
(

Mi
R,R;q

s) = Cblood + Cdrag + Cwall

= �blood�R2 +
8�qs2

�fluidR4 + 2�R
�solid

∑

i
�iMi

R.

(16)T�� =
Mtotal

R

(1 − �f )�solid���z

∑

i

�i�i
�
,

(17)�
i =

1

hi
�
i, hi =

Mi
R

(1 − �f )�solid���z
,

(18)p
s
R =

Mtotal
R(

1 − �f

)
�solid

∑

i

vi�i
�

for a single vessel (15), we can rewrite the optimization 
problem in terms of R

Minimization of this cost function with respect to radius 
governs the homeostatic state of a single vessel whose mean 
pressure and flow are known (Supplemental Materials E). 
This optimization is generalized to an entire arterial tree as 
described in the next section.

2.5  Iterative process of optimization

To generalize the homeostatic optimization to an arterial 
tree, a global hemodynamic constraint must be considered 
to determine ps and qs for each vessel. This hemodynamic 
constraint is coupled with the optimization problem in an 
iterative manner. To implement this iterative algorithm (Sup-
plementary Materials E), we first construct a tree with vessel 
connectivity from the literature (based on a fractal rule or 
Strahler ordering) and initial guesses for diameters. Second, 
using this tree structure, the slow-time hemodynamics prob-
lem is solved for the entire tree (Supplementary Materials 
E). The boundary conditions for the hemodynamic problem 
are either pressure or flow, imposed at the inlet and outlets 
of the tree. Third, to update the vessel radii, the cost func-
tion minimization problem is solved in each segment using 
Newton–Raphson method (Supplementary Materials G). 
The second and third steps are repeated until convergence 
is achieved, i.e., the hemodynamics remain constant across 
two subsequent iterations. Figure 2 shows the schematic of 
the implementation.

We must note that in the current framework the fast-time 
hemodynamics in a tree is solved after the homeostatic char-
acteristics are established. This one-way coupling (slow time 
to fast time) is facilitated through computing the stiffness 
A��

||s , by linearization of the constrained mixture model of 
each vessel. In accordance with this coupling, we present the 
homeostatic optimization results (vessel radii upon minimi-
zation of Eq. (19) followed by the results for the pulsatile 
hemodynamics for each example).

2.6  Model parameters

To illustrate our framework, we apply our model to estimate 
the homeostatic characteristics and hemodynamics of the 
intermediate and small pulmonary arteries (with radius of 
0.5–0.01 cm). The arterial network considered in our frame-
work starts from the fourth distal vessel (first being the main 
pulmonary artery) for up to the next nineteen generations. 

(19)
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We illustrate our framework in three examples as shown 
in Table 1: (1) A symmetric pulmonary tree with constant 
constituent mass fractions (Case 1), (2) A symmetric pulmo-
nary tree with variable constituent mass fractions (Case 2), 
and (3) An asymmetric tree with variable constituent mass 
fractions (Case 3).

For the pulsatile hemodynamics, we prescribe an input 
flow waveform taken from normotensive human measure-
ments in the main pulmonary artery (Zambrano et al. 2018) 
scaled to fourth distal vessel (first being the main pulmonary 
artery) downstream assuming an even split at initial three 
bifurcations. In addition, the first nine harmonics are used 
to represent pressure and flow waveforms in the frequency 
domain. Furthermore, a terminal reflection coefficient is pre-
scribed at the terminal vessels for fast-time hemodynamics. 
For the symmetric tree applications of the homeostatic opti-
mization, as shown in Table 1, we prescribe at the inlet the 
mean flow, and at the outlets a terminal pressure (assumed 
to be close to the capillary pressure). In the asymmetric tree, 
however, we prescribe the inlet mean pressure (12 mmHg) 

and uniform flow at the outlets (mean flow/number of out-
lets). In all examples, L(R) can be described using the rela-
tion given in (Olufsen et al. 2012) which approximates the 
human morphometric data from a single pulmonary arterial 
tree cast (Huang et al. 1996). We modified L(R) , scaling it 
by factor of half, to obtain the lengths closer to observations 
in the proximal vessels from the literature data (as shown 
in Fig. 4).

Elastin in human arteries is mostly produced in early 
ages, and due to a long half-life, its content remains rel-
atively constant over time in normal conditions. There-
fore, in this study the metabolic energy cost of elastin is 
neglected, �el = 0 . The metabolic cost coefficients �i of 
maintenance of SMCs and collagen in the normotensive 
vessel wall are estimated to be the order of 1000 W/m3 
(Liu and Kassab 2007). Although the metabolic cost of 
these constituents may vary throughout the arterial tree, 
we chose the value 1500 W/m3 for the entire tree, as shown 
in Table 2. The metabolic cost of active tension in SMCs 
was experimentally measured and reported in (Paul 1980). 

Fig. 2  Schematic representa-
tion of the iterative process for 
homeostatic optimization: ves-
sel stiffness, length, radius, wall 
composition and thickness are 
defined for individual vessels 
and the metabolic cost function 
is used to iteratively optimize 
for the radii using slow-time 
hemodynamics in the entire tree

Table 1  Summary of the three cases of the arterial tree framework
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Based on this study, Taber (1998) determined the value of 
active tension metabolic cost to be 0.00872 W/N.m and 
proportional to the active tension. Since the active tension 
is proportional to the content of SMCs in the vessel wall, 
the metabolic cost can be assumed to be proportional to 
SMC content (Supplementary Materials D). Furthermore, 
the metabolic energy requirements for maintaining blood 
in arteries are adopted from Liu et al. (2012) based on the 
number of red blood cells, white blood cells, and platelets 
in a unit volume of blood and their corresponding oxygen 
consumption rate for a normal adult human subject.

A constrained mixture model (Seyedsalehi et al. 2015) 
is used to simulate the mechanics of vessels (Supplemen-
tary Materials B). The passive mechanical properties of 
the proximal vessels are calibrated against experimental 
data from inflation tests on pulmonary arteries of pigs 
(Wang et al. 2020). In the current study, we assume that 
the individual constituents preserve their mechanical 
behavior in different locations along the tree, and the depo-
sition stretches vary depending on their local transmural 
pressure. Therefore, intrinsic mechanical parameters wall 
constituents are considered constant (i.e., constant pas-
sive stiffnesses ( c1 − c5 ) and active properties S , �0 , and 
�M ), whereas the prestretches ( Gel

�
,Gel

z
,Gcol

h
 , and Gsmc

h
 ) are 

calibrated in each vessel by matching the experimental 
thickness-to-diameter ratio (~ 7% to 16% from large arter-
ies to microvessels) reported in (Li et al. 2012; Rol et al. 
2017).

In Case 1, constant mass fractions for the constituents are 
prescribed in the entire arterial tree. The adventitial layer 
of the arterial wall was assumed to be comprised of 95% 
of collagen and 5% of elastin. Furthermore, Mackay and 
colleagues (Mackay et al. 1978) reported the mass fractions 
of the constituents in the medial layer of pulmonary arter-
ies in healthy humans. The mass fractions, therefore, are 
estimated using the relative layer-wise thicknesses reported 
in (Chazova et al. 1995). However, the pulmonary arterial 
wall composition varies throughout the arterial tree (Elliott 
and Reid 1965). The variable composition of the vessel wall 
is reflected in Cases 2 & 3 by varying the content of elastin 
and SMCs in the medial layer using data from (Chazova 
et al. 1995) (Fig. 3). Particularly, most of the arteries larger 
than 0.32 cm in diameter are elastic arteries endowed with 
multiple layers of elastic lamina. As arteries become smaller, 
their structure transitions from elastic to muscular type over 
a range of 0.32–0.2 cm where the elastic layers fragment 
and are replaced by SMC (Elliott and Reid 1965). The arter-
ies smaller than 0.2 cm have a muscular media with two 

Table 2  Model parameters for homeostatic optimization and pulsatile hemodynamics

Parameter description Reference

Extended Murray’s law
Metabolic cost of collagen and SMCs �col,�smc

maint

Metabolic cost of elastin �el
1500 W/m3

0 W/m3
(Liu and Kassab 2007)

Metabolic cost of blood supply �blood 51.7 W/m3 (Liu et al. 2012)
Metabolic cost of active tension �smc

act
0.00872  s−1 (Paul 1980)

Vessel wall mechanical properties
Wall density �solid 1060 kg/m3

Constant mass fractions
�el, �smc, �col

77% collagen,
12% SMCs,
11% elastin

(Mackay et al. 1978)
(Chazova et al. 1995)

Variable mass fractions
�el, �smc, �col

Shown in Fig. 3 (Elliott and Reid 1965)

Constrained mixture model parameters
(Supplemental Materials B)

c1 = 28.83, c2 = 178.59, c4 = 24.51N.m∕kg

c3 = 1.05, c5 = 0.75

�c = 0,±45, 90

�M = 1.2, �0 = 0.7

S = 20kPa

Fit to data in (Wang et al. 2020)

Hemodynamics
Input flow waveform, scaled by 1/8 mean flow 11.65 ml/s (Zambrano et al. 2018)
Length-to-radius relation L(R) L = 6.2 R1.1 mm
Mean terminal pressure (Cases 1 & 2)ps

T
10 mmHg (Qureshi et al. 2014)

Terminal reflection coefficient Γ  − 1 (Hollander et al. 2001)
Blood density �f luid 1060 kg/m3

Dynamic viscosity � 0.0035 Pa sec
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distinctive internal and external elastic laminas (Hislop and 
Reid 1978). Although arteries smaller than 0.01 cm are 
not included in this study, we must note that the number of 
muscular arteries significantly drops when an arterial size 
approaches 0.01 cm and below. In this region, the vessels 
become partially or non-muscular.

3  Results

In this section the morphometric, hemodynamics and home-
ostatic optimization results are presented for the three dif-
ferent cases of the arterial tree framework (Table 1) and are 
compared to published data.

3.1  Case 1: Symmetric tree with constant mass 
fractions

Figure 4 shows the results of the morphometric and hemo-
dynamics results of the homeostatic optimization. Fig-
ure 4a shows vessel diameters resulting from the homeo-
static optimization. The morphometry study (Huang et al. 
1996) reported 15 orders of arteries in a human lung using 
the Strahler ordering system, where the first and fifteenth 
order vessels correspond to precapillary vessels and right/
left pulmonary arteries, respectively. A comparison of our 
results with data from this study indicates an agreement 
between our first generation and their fourteenth order ves-
sels which are located at two bifurcations downstream to 
the pulmonary trunk. The vessel lengths are depicted in 
Fig. 4b and compared to human data on proximal pulmo-
nary arteries. In addition, the exponent � in the daughter-
to-parent radius relation D�

p
= D

�

d1
+ D

�

pd2
 is determined to 

be approximately cubic (2.980 ± 0.004) along the tree 
(consistent with the original Murray’s law). The daughter-
to-parent area ratio ad∕ap is almost constant and falls in 
the range of 1.2–1.3. The thickness-to-diameter ratio is 
shown in Fig. 4c, comparing a range of values reported in 
experimental studies (Li et al. 2012; Rol et al. 2017). This 
ratio increases distally which is consistent with a trend 
observed in arterial networks in the systemic circulation 
(Guo and Kassab 2004; Pries et al. 2005). Pressure distri-
bution along the tree is shown in Fig. 4d. The pressure 
gradient becomes steeper toward the terminal vessels 
where most of the pulmonary arterial resistance resides.

Figure  5a shows the axial EZZ  and circumferential 
E�� Young’s moduli, linearized at the estimated luminal 
pressure, and structural stiffness of pulmonary vessels 
across the symmetric tree. The axial Young’s moduli are 
markedly lower than those in the circumferential direc-
tion (Baek et al. 2007a; Bernal et al. 2011) and both are 
decreasing across the generations. Figure  5b shows a 

comparison of the structural stiffness E��h∕R0 as a result 
of the homeostatic optimization, with data in (Krenz and 
Dawson 2003; Yen et al. 1990; Wang et al. 2020). Of note, 
the experiments in (Wang et al. 2020) were conducted only 
on the main porcine pulmonary vessels, and the value for 
the first generation is presented in Fig. 5b for the compari-
son purpose.

Next, we demonstrate the results of the fast-time hemody-
namic analysis. The most valuable outcome from modeling 
for the pulsatile flow in the distal vasculature is an estima-
tion of the pulse wave velocity across the tree (Fig. 6a). 
The pulse wave velocity c  depends on the wall stiffness as 
well as Womersley’s number�Wom in (8), which is shown for 
the first and the ninth harmonics (Fig. 6b). Thus, the steep 
decrease of the pulse wave velocity across the generations is 
the result of vessel dimension variability, decrease in �Wom , 
and heterogeneity of wall stiffness (Fig. 5b). The idealized 
Moens–Korteweg pulse wave velocity cMK is plotted for 
the comparison. The pulse wave velocity as a result of the 
homeostatic optimization agrees with the experimental data 
measured for large human pulmonary arteries marked on 
the first generation (Milnor et al. 1969; Banks et al. 1978).

3.2  Case 2: symmetric tree with variable mass 
fractions

Figure 7 shows the homeostatic optimization results of the 
Case 2 compared to Case 1. The sudden variation in the 
radial exponent � between third and sixth generations cor-
responds to the transition region of the vessel from elastic 
to muscular arteries (Fig. 7a). Homeostatic values of the 
mechanical stresses are plotted in Fig. 7b and d. The wall 
shear stress value � is within 1–2.5 Pa for Case 1 that was 
observed in the systemic circulation (Kamiya et al. 1984; 
Pries et al. 1995). Similar wall shear stress is observed in 
Case 2, which follows an increasing trend across the tree 
ranging from 1.14 to 1.27 Pa from larger to smaller ves-
sels (Fig. 7b). Figure 7c shows a step-drop in longitudinal 
Young’s modulus as blood vessels become more muscular in 
Case 2 as opposed to the linear trend in Case 1. The decreas-
ing trend of hoop stress in Case 1 (Fig. 7d) is also compat-
ible with observations in the systemic circulation (Guo and 
Kassab 2004; Pries and Secomb 2005), although the values 
are significantly smaller. On the other hand, Case 2 has a 
slight increase in the stiffness measure Eh∕R0 leading to an 
increased average and a reduced variability along the tree 
(Fig. 7d).

3.3  Case 3: asymmetric tree with variable mass 
fractions

Finally, we apply our framework to an illustrative reconstruc-
tion of a pulmonary arterial tree based on vessel connectivity 
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data on the first five largest orders of vessels in Huang et al. 
(1996) (see details of tree reconstruction and initialization 
in Supplemental materials G). In this example, we use the 
mass fraction values from Case 2. However, the pressure 
is prescribed at the inlet and uniform flow is prescribed at 
outlets as boundary conditions. The input pressure is taken 

from the symmetric tree results as 11.92 mmHg. Flow at 
outlets is prescribed by assuming an even split of input flow, 
11.65 ml/s, among all outlets. To illustrate the results, we 
use the cumulative distance of middle of each arterial seg-
ment from the root of the arterial tree X . Figure 8 depicts 
the results of our optimization on this tree. Figure 8a shows 
a schematic of our asymmetric tree, where the shortest path 
and the longest paths along the pulmonary arterial tree are 
highlighted. The shortest path includes five generations, 
whereas the longest path includes 28 generations of vessels. 
Slow time pressure is illustrated for all the vessels in Fig. 8b. 
Clearly, the shortest and longest path results bound the dis-
tributions. Furthermore, the stratification of pressure along 
the generations shows a low variability of pressure within 
each generation. The stiffness measure and wall shear stress 
follow the same trends as Case 2 of the symmetric example. 
However, the stiffness measure is distributed around 9 kPa 
and falls below the experimental observations (Fig. 8c).

Next, we simulate the pulsatile hemodynamics in the 
asymmetric tree. Figure 9 shows the pulse wave velocity for 
the shortest and longest paths across the pulmonary arterial 
tree. Similar to the symmetric tree cases, the pulse wave 
velocity is close to measurements in main pulmonary arter-
ies reported in (Milnor et al. 1969; Banks et al. 1978).

Figure 10 shows the pulsatile hemodynamics solution 
along the symmetric and asymmetric vascular tree. In case 
of symmetric tree (Fig. 10a), the total input flow splits 
evenly at each generation. The total terminal pressure is 

Fig. 3  Prescribed variable mass fractions of the wall constituents: 
elastin, smooth muscle cells and collagen. The arrows on the top 
show the trend in arterial composition

Fig. 4  Symmetric tree—homeo-
static optimization results 
plotted against generation 
number: a diameter distribution 
compared to reported data of 
large vessels; b length distribu-
tion compared to reported data 
of large vessels. Structural and 
hemodynamics results plotted 
against vessel diameter: c wall 
thickness-to-diameter ratio 
compared to reported data; d 
mid-vessel pressure
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within the physiological range 8–25 mmHg. The minimum 
diastolic pressure falls below the mean pressure in proximal 
vessels that can be explained by negative type of wave reflec-
tion. Note that using Eq. (10), we obtain negative values of 
the reflection coefficient’s real part at the end of each vessel 
in the range of (− 1, − 0.32). In asymmetric tree, pulsatile 
hemodynamics is plotted for the longest and shortest paths 
in Fig. 10b, c. The total input flow splits at every bifurca-
tion, giving a greater fraction of flow to the longest path. 
Moreover, the backflow is more significant in the asymmet-
ric case compared to the symmetric cases. Similar to Case 
1, however, the total terminal pressure clearly has negative 
wave reflections.

4  Discussion

Experimental studies have recognized the multiscale nature 
of pulmonary arterial tree in structure and function, and 
emphasized the importance of vascular remodeling. At the 
structural level, pulmonary vascular remodeling associated 
with PAH involves increased collagen deposition, degra-
dation of elastin, and SMC proliferation, which culminate 
in stiffening and thickening of the vessel wall (Wang and 
Chesler 2011). At the vascular tree level, morphometric 
changes such as rarefaction have been observed in PAH 

(Humbert et al. 2019). Hemodynamic factors (mean/pulse 
pressure, wall shear stress, etc.) in the cardiopulmonary sys-
tem significantly contribute to onset and progression of these 
pathologies. Previous studies on vascular G&R have postu-
lated that the vascular G&R is indeed caused by a depar-
ture from the homeostatic baseline (Humphrey et al. 2014). 
Taken together, the study of G&R in PAH necessitates an 
integrated study of the pulmonary arterial tree morphometry, 
hemodynamics, and vessel wall structure.

Figueroa et al. (2009) introduced the fluid–solid-growth 
FSG framework to study the coupling between the hemo-
dynamics and G&R. Motivated by the FSG framework, we 
outlined the key ideas for developing a temporal multiscale 
framework to study long-term adaptations in PAH. We 
then generalized Womersley’s linear theory to model the 
fluid–solid-interactions in an arterial tree. Furthermore, we 
developed a novel method for establishing the homeostatic 
baseline for a pulmonary arterial network using metabolic 
energy considerations. Based on an extended Murray’s law, 
we assumed that the equilibrium state of an arterial net-
work minimizes the total metabolic energy consumption. 
Therefore, a cost function was formulated to incorporate the 
metabolic needs for blood supply in a vessel and for mainte-
nance of the vessel wall constituents, and energy dissipation 
due to blood viscosity. The optimization of this cost func-
tion resulted in the vessel radii, content of constituents, and 

Fig. 5  Symmetric tree—homeo-
static optimization results 
for the wall stiffness versus 
generation number: a Young’s 
modules in circumferential and 
longitudinal directions; b stiff-
ness measure—circumferential 
structural stiffness divided by 
unstressed radius and compared 
to distensibility relations from 
data

Fig. 6  Symmetric tree—pul-
satile hemodynamics results 
versus generation number: a 
pulse wave velocity for two har-
monics, compared to data and 
Moens–Korteweg speed values; 
b Womersley’s number for two 
harmonics
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slow-time blood pressure and flow in the pulmonary arterial 
tree. We illustrated the utility of our homeostatic optimiza-
tion framework on examples of symmetric and asymmetric 
pulmonary trees representing small- to intermediate-size 
vessels (0.01 to 0.5 cm) of the pulmonary vasculature. The 
results were presented in terms of the morphometric, struc-
tural, and hemodynamics characteristics of the vessels in the 
tree. Employing our timescale separation framework, the 
results of the homeostatic optimization were used to obtain 
the pulsatile hemodynamics using Womersley’s analytical 
solution.

The morphometric results of the optimization have a 
direct impact on the pulsatile hemodynamics of the pulmo-
nary tree. Hollander et al. (2001) demonstrated that the nor-
mal canine pulmonary circulation is characterized by nega-
tive wave reflections. The primary factor in producing the 
negative wave reflections in the pulmonary arterial tree is the 
rapid increase in the total arterial cross-sectional area over a 
short distance. Moreover, it has been shown that the negative 
wave reflection when ad∕ap > 1.2 . Our results show an area 
ratio of 1.2 < ad∕ap < 1.3 , consistent with pulmonary area 
ratios reported in various animals (Caro and Saffman 1965; 
Collins and Maccario 1979), induces a negative wave reflec-
tion which can be observed with a sudden drop in pressure 
after the systolic phase in Fig. 10.

Estimating the arterial stiffness of distal pulmonary 
vasculature, however, is experimentally challenging. Pre-
vious studies employ a distensibility parameter � , defined 

as R
/
R0 = 1 + �p with pressure p and radius at zero pres-

sure R0 , to characterize the mechanical properties of arterial 
walls. A meta-analysis by Krenz and Dawson (2003) calcu-
lated a constant �KD = 0.02  mmHg−1 by combining experi-
mental data across multiple species and different sizes of 
vessels. Moreover, a study on human specimens (Yen et al. 
1990) reported �Yen = 0.012  mmHg−1, almost constant along 
the pulmonary arterial tree. For an isotropic incompressible 
wall, the stiffness measure can be expressed via distensibility 
parameter as Eh

/
R0 = 3∕(4�) (Qureshi et al. 2014), where 

Eh is the structural stiffness (Humphrey et al. 2017). Our 
homeostatic optimization (Cases 1 and 2) yields an overall 
mildly decreasing ratio E��h

/
R0 (Figs. 5b, 7d and 8c) that 

is near the constant value �Yen and is above �KD . It must be 
noted that due to nonlinear mechanics of blood vessels the 
arterial stiffnesses change with pressure over a cardiac cycle. 
Therefore, an accurate approximation of the wall stiffness 
is needed for modeling fluid–structure interactions must 
be used. Our framework allows incorporating a nonlinear 
mechanical model (constrained mixture model) of vessels 
with pulsatile hemodynamics over a whole arterial tree, and 
calculation of vessels stiffnesses in their in vivo configura-
tion near their respective mean pressure.

We have developed a computational framework in which 
the complexity of structure and spatial variation has been 
increased (Case 1, 2, 3) to elucidate their variations for meta-
bolic optimization, hemodynamics, and material properties. 

Fig. 7  Symmetric tree—homeo-
static optimization results of 
Case 1 (blue) compared with 
Case 2 results (red): a radius 
exponent in daughter-to-parent 
radii relation; b homeostatic 
value of wall shear stress; c 
Young’s modulus in circum-
ferential (top) and longitudinal 
(bottom) directions; d circum-
ferential structural stiffness 
divided by unstressed radius
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For instance, introducing a more realistic mass fraction dis-
tribution based on available data (in Case 2) has shown to 
significantly alter the results of the geometry and mechani-
cal properties of the vessels in a pulmonary tree. Across 
the transition region (Fig. 3) elastin content is reduced and 
SMCs content is increased which requires a higher meta-
bolic energy for maintenance. Our results show that the 
energy optimization favors a smaller vessel with a higher 
percentage of collagen and SMCs to a large vessel with less 
percentage of collagen and SMCs. This is reflected in a drop 

in the radius exponent (Fig. 7a) where a smaller � implies 
smaller parent-to-daughter diameter ratio. In comparison 
with Case 1, this reduction in vessel sizes across the transi-
tion region results in a step-increase of the wall shear stress 
(Fig. 7b). Moreover, a sudden decrease in the axial Young’s 
modulus of the arteries is caused by replacement of isotropic 
elastin matrix with SMCs that contribute to stiffness of the 
wall only in the circumferential direction.

Once the homeostatic state of the pulmonary tree was 
established, the fast-time framework was used to model the 
pulsatile hemodynamics. The hemodynamic solution pro-
vides the total pressure and flow distribution as well as the 
pulse wave velocity along the entire tree. Especially, pulse 
wave velocity is an important hemodynamic factor in PAH 
(Kopeć et al. 2013) and has been proposed for noninvasive 
monitoring of pulmonary vasculature (Prins et al. 2016). The 
predicted pulse wave velocity shows reasonable agreement 
with available measurements for large pulmonary vessels 
(Milnor et al. 1969; Banks et al. 1978). Moreover, our results 
demonstrated a decrease in pulse wave velocity across the 
generations due to wall stiffness and Womersley’s number 
variabilities. Altogether, the proposed framework will be 
beneficial for obtaining the impedance outflow boundary 
conditions essential for coupling distal vasculature with 
large vessel 3D hemodynamic simulations in the patient-
specific models.

The presented framework has several limitations. First, 
we extended the intrinsic material parameters calibrated 
for pressure-diameter data for the main pulmonary arteries 

Fig. 8  Asymmetric tree—
homeostatic optimization results 
versus distance (from the root, 
along the branch pathway), red 
dots represent optimization 
results for each vessel, green 
and blue lines indicate the short 
and long path, respectively: a 
a random visualization of the 
tree; b terminal steady pressure; 
c ratio of structural stiffness to 
unstressed radius; d homeostatic 
wall shear stress

Fig. 9  Asymmetric tree—pulse wave velocity for long and short paths
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(Wang et al. 2020) to the whole arterial tree. The underlying 
assumption was that the mechanical characteristics of constitu-
ents remain constant across the tree and only the deposition 
stretches vary. Nevertheless, more experimental data (pres-
sure-diameter relations and histological analysis) on pulmo-
nary arteries of various sizes can improve the determination of 
the constrained mixture model parameters and mass fractions. 
Second, we used a constant blood viscosity, which is justi-
fied given the range of vessel sizes. However, for the appar-
ent viscosity changes for vessels < 50 micron, the dependence 
of apparent viscosity on the vessel size and hematocrit level 
must be incorporated (Pries and Secomb 2005). Third, another 
limitation of the current work is that a large set of parameters 
taken from diverse literature data are used to construct and 
demonstrate the model. In future, a sensitivity analysis and 
uncertainty quantification must be done to identify the influ-
ence of each parameter on the final output. Fourth, in our Case 
3 example, we showed an application of the framework to an 
asymmetric tree defined by the vessel connectivity from mor-
phometric data (Figs. 8 and 10). However, this reconstruction 
(visualized in Fig. 8a) represents only a small fraction of the 
morphometry data in (Huang et al. 1996), with only 1511 ves-
sels. In general, our model can be coupled models with more 
detailed reconstructions of pulmonary vasculature, such as a 
volume filling algorithm (Burrowes et al. 2005) or stochas-
tic techniques using morphometry data (e.g., coronary tree 
reconstruction in (Kaimovitz et al. 2005)). Lastly, in this work 
we illustrated a one-way coupling example between the slow 
and fast timescales, where our solution to the pulsatile hemo-
dynamics is merely a post-processing step. However, experi-
mental data have shown that pulsatile factors such as pulse 
pressure have a direct effect on the structure of vessel walls 
(Briones et al. 2007). To address this limitation, the presented 
multiscale framework can be extended to include additional 
intermediate timescales and include physical regimes that are 
characterized by bidirectional coupling between governing 
equations at different timescales.

5  Conclusions

One of the main applications to developing the current model 
is pulmonary arterial hypertension, which is marked by struc-
tural and morphometric changes in the vasculature. The study 
of evolution of PAH can benefit from computational models 
that can appropriately describe both the microstructure of 
the vessels and the overall hemodynamics in the whole arte-
rial network. In this work, we developed a novel method to 
establish the homeostatic characteristics of an arterial tree. 
In addition, we formulated a timescale separation framework 
to develop a model for pulsatile hemodynamics. Our frame-
work can be used to study short- and long-term adaptations 
in pulmonary arterial networks. Moreover, our model can be 
coupled with 3D patient-specific hemodynamics models as 
impedance boundary conditions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10237- 023- 01693-7.
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