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A B S T R A C T   

The development of cerebrovascular disease is tightly coupled to regional changes in intracranial flow and 
relative pressure. Image-based assessment using phase contrast magnetic resonance imaging has particular 
promise for non-invasive full-field mapping of cerebrovascular hemodynamics. However, estimations are 
complicated by the narrow and tortuous intracranial vasculature, with accurate image-based quantification 
directly dependent on sufficient spatial resolution. Further, extended scan times are required for high-resolution 
acquisitions, and most clinical acquisitions are performed at comparably low resolution (>1 mm) where biases 
have been observed with regard to the quantification of both flow and relative pressure. The aim of our study was 
to develop an approach for quantitative intracranial super-resolution 4D Flow MRI, with effective resolution 
enhancement achieved by a dedicated deep residual network, and with accurate quantification of functional 
relative pressures achieved by subsequent physics-informed image processing. To achieve this, our two-step 
approach was trained and validated in a patient-specific in-silico cohort, showing good accuracy in estimating 
velocity (relative error: 15.0 ± 0.1%, mean absolute error (MAE): 0.07 ± 0.06 m/s, and cosine similarity: 0.99 
± 0.06 at peak velocity) and flow (relative error: 6.6 ± 4.7%, root mean square error (RMSE): 0.56 mL/s at peak 
flow), and with the coupled physics-informed image analysis allowing for maintained recovery of functional 
relative pressure throughout the circle of Willis (relative error: 11.0 ± 7.3%, RMSE: 0.3 ± 0.2 mmHg). 
Furthermore, the quantitative super-resolution approach is applied to an in-vivo volunteer cohort, effectively 
generating intracranial flow images at <0.5 mm resolution and showing reduced low-resolution bias in relative 
pressure estimation. Our work thus presents a promising two-step approach to non-invasively quantify cere
brovascular hemodynamics, being applicable to dedicated clinical cohorts in the future.   

1. Introduction 

Changes in regional hemodynamics are intimately coupled to the 
manifestation of cerebrovascular disease, making the quantification of 
flow and pressure key to improved individualized risk stratification. 

Variations in pressure throughout the cerebrovasculature have been 
particularly highlighted in a number of clinical scenarios: the functional 
impact of intracranial atherosclerosis linked to regional changes in 
intravascular pressure (Leng et al., 2014), the likelihood of cerebral 
aneurysm growth coupled to regional pressure gradients (Penn et al., 
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2011), and experimental work showing altered pressure variations in 
arteriovenous malformations (Rivera-Rivera et al., 2018). While trans
cranial Doppler or 2D phase-contrast magnetic resonance imaging 
(PC-MRI) provide limited information on regional flow, it is through 
time-resolved three-dimensional phase-contrast magnetic resonance 
imaging (4D Flow MRI) that full-field hemodynamic mapping can be 
achieved (Stankovic et al., 2014). 4D Flow MRI has been used in a 
number of studies to capture cerebrovascular flow phenomena (Morgan 
et al., 2021), and in combination with physics-informed image pro
cessing, quantification of relative pressure is permitted (Marlevi et al., 
2021b). However, the spatial resolution has shown to be critically 
important for the accurate image-based quantification of both cerebro
vascular flow (Aristova et al., 2019) and relative pressure (Marlevi et al., 
2021b). Specifically, in standard clinical systems settings for cerebro
vascular 4D Flow MRI of around dx = 1 mm, significant biases have been 
indicated when quantifying flow and relative pressure through the circle 
of Willis (Aristova et al., 2019; Marlevi et al., 2021b). While imaging can 
be theoretically performed at finer spatial sampling (sub-mm resolu
tion), more averages would be required to compensate for increased 
image noise, which would ultimately result in clinically infeasible scan 
times. There thus remains a need for effective approaches to achieve 
high-resolution flow imaging in order to allow for accurate quantifica
tion of cerebrovascular hemodynamics in a clinical setting. 

To address the need for improved spatial resolution, high-Tesla ap
proaches have been proposed (Gottwald et al., 2020; Metcalf et al., 
2010), however, are inherently limited to specialized imaging systems. 
The use of image-guided computational fluid dynamics (CFD) modeling 
has also been explored (Perez-Raya et al., 2020; Schollenberger et al., 
2021), however, generally put high demand on available computational 
resources, and further depend on boundary conditions typically 
requiring additional specialized imaging protocols (Schollenberger 
et al., 2021). 

As an alternative to these deterministic approaches, deep learning 
methods have recently been applied in the field of medical image 
enhancement. For MRI, deep learning methods have been proven to 
enable data denoising (Rutkowski et al., 2021), artefact compensation 
(Oksuz et al., 2018), and to generate super-resolution anatomical 

reconstructions of the brain (Plenge et al., 2012). For flow-based MRI, 
2D-studies have shown the ability to generate accelerated re
constructions of phase-contrast images (Nath et al., 2020), as well as 
enable automatic flow quantification over network-segmented flow 
domains (Bratt et al., 2019). For 4D Flow MRI, Ferdian et al. (Ferdian 
et al., 2020) proposed the so-called 4DFlowNet to generate 
super-resolution 4D Flow MRI data from low-resolution input, with the 
network trained on synthetic pairs of low/high-resolution images 
generated from aortic CFD simulations. Other alternatives include Rut
kowski et al. (Rutkowski et al., 2021) using a convolutional neural 
network (CNN) generating denoised 4D Flow images, and Fathi et al. 
(Fathi et al., 2020) using a Physics-Informed Neural Network (PINN) to 
generate super-resolution 4D Flow images, with ground-truth CFD data 
used for network testing. Whilst 4DFlowNet was only tested on 
large-vessel aortic flows, both the CNN and the PINN-based alternatives 
were implemented on either phantom-data resembling cerebrovascular 
flow, or on selected in-vivo sets. However, no extended quantitative 
analysis has been performed for in-vivo usage in a cerebrovascular 
setting. Furthermore, neither of the above-mentioned networks (2D or 
3D) have been tested with respect to functional pressure measurements, 
and it remains unknown whether pressure changes through the image 
domain are maintained or even improved by applying any of these 
super-resolution procedures. 

The purpose of this study is therefore to develop an approach for 
quantitative intracranial super-resolution 4D Flow MRI, specifically eval
uating whether a combination of dedicated deep learning and subsequent 
higher-dimensional image processing could allow for accurate and 
comprehensive estimation of velocity, flow, and relative pressure 
throughout the cerebrovasculature. Specifically, our study aims include 
(1) assessing whether a dedicated cerebrovascular super-resolution 
network could improve estimates of regional intracranial velocities 
and flows, and (2) evaluating whether the two-step combination of deep 
learning based super-resolved images and sequential physics-informed 
image processing would allow for accurate recovery of functional rela
tive pressures throughout the cerebrovascular space. To achieve this, the 
existing super-resolution network 4DFlowNet (Ferdian et al., 2020) and 
the physics-informed virtual work-energy relative pressure approach 

Fig. 1. Overview of the methodological framework including data preparation (top left), network training (top right), and inference (bottom) enabling super- 
resolved 4D Flow MRI with coupled quantification of hemodynamic relative pressures throughout the intracranial space. 
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vWERP (Marlevi et al., 2019) are for the first time utilized in sequence, 
and applied in a cerebrovascular imaging setting, with dedicated 
patient-specific CFD models and clinically acquired 4D Flow MRI used to 
train, test, and validate the recovery of comprehensive intracranial he
modynamics. Once validated against ground truth reference, and once 
compared against alternative deterministic super-resolution methods, 
our two-step approach is also applied to an in-vivo cohort of subjects 
scanned at multiple resolutions, demonstrating the potential of 
super-resolution imaging in a clinical setting. To summarize, the main 
contributions of this paper thus lie in the ability for quantitative intra
cranial flow imaging, using a two-step approach of deep 
learning-enhanced 4D Flow MRI and subsequent physics-informed 
image processing to jointly overcome estimation biases otherwise 
observed in clinical level input data. 

2. Methods 

This section is structured as follows: first, a methodological overview 
of the deep learning framework for super-resolution 4D Flow MRI is 
provided (Section 2.1), including specifications of network architecture 
(Section 2.1.1) and loss function (Section 2.1.2). Second, details of the 
utilized training and testing data are provided (Section 2.2), including 
patient-specific in-silico models (Section 2.2.1), acquired in-vivo data 
(Section 2.2.2), and the assembly of both into patches for dedicated 
training (Section 2.2.3). Lastly, details of performance quantifications 
are provided (Section 2.3), including in-silico validation (Section 2.3.1) 
and clinical in-vivo implementation (Section 2.3.2). Additionally, Fig. 1 
presents an illustrative overview of the methodological basis of the 
paper. 

2.1. Deep learning framework 

2.1.1. Network architecture 
To achieve super-resolution flow images, we utilize the deep residual 

network structure of 4DFlowNet (Ferdian et al., 2020); a previously 
published network validated for large-vessel aortic flows. Briefly, the 
architecture is based on a central upsampling layer (using bilinear 
interpolation) surrounded by a series of stacked residual blocks (RB), 
with preceding RBs denoising and pre-processing the input, and subse
quent RBs refining and sharpening the predicted output. During infer
ence, both low-resolution magnitude and velocity phase 3D image 
patches were utilized as input, with super-resolution 3D velocity patches 
generated as output; all as described in previous work (Ferdian et al., 
2020) (an overview of the network architecture is provided in 

Appendix A and coupled Appendix Fig. A.1). 
We used a similar design to the original 4DFlowNet architecture 

(Ferdian et al., 2020), with adjustments introduced for its application on 
cerebrovascular flow data:  

1 Patch input size was changed from an original 16-voxel cube, to a 12- 
voxel cube, accounting for the smaller vessel sizes encountered in the 
cerebrovascular space. The new patch size was empirically deter
mined during preliminary testing, with a 12-voxel cube deemed 
optimal in the trade-off between including excessive amounts of non- 
flow regions (using a large patch size), and excluding too much flow 
information (using a small patch size).  

2 The original hyperbolic tangent activation functions at the output 
layers were removed, resulting in linear output layers. This was 
introduced to allow for unbounded output values. While in our work, 
the output values were still bounded between [− 1, 1] by the 
normalized data and the loss function definition (see below), a linear 
output layer would allow for the possibility of automatic velocity 
aliasing (phase-wrapped) correction in future work.  

3 The gradient terms were removed from the loss function, following 
improvements observed in near-wall velocity estimates in the pre
liminary data assessment. 

The modified network was trained using an Adam optimizer, with a 
learning rate empirically set to 2•10− 4. Batch sizes of 20 were used for 
training (based on the maximum number of batches allowed within our 
computational memory storage), and the model with the best validation 
loss was chosen. The model was trained for 60 epochs, whereafter no 
further improvements were observed. The network was implemented 
using Tensorflow 2.2.0 (Abadi et al., 2016), utilizing a Keras backend 
(training setup, hyperparameters, and trained weights are all publicly 
available at https://github.com/EdwardFerdian/4DFlowNet). 

2.1.2. Loss function definition 
For the loss function, the optimization target was set to minimize the 

mean squared error (MSE) between the generated super-resolution im
ages, and the paired high-resolution input data. The voxel-wise loss was 
defined as the mean of the sum squared differences between Cartesian 
velocity components, (Δv2

x , Δv2
y and Δv2

z ), given as 

lMSE =
1
N

∑N

i=1
Δv2

x + Δv2
y + Δv2

z (1)  

where N is the total number of voxels in the assessed image domain 

Fig. 2. Overview of the in-silico input used for re-training of the 4DFlowNet network, showing one of the four used models (Subject 3b). From left to right: model 
overview and patch generation through the proximal cerebrovascular ROI; velocity field (color range 0 - 80 cm/s); pressure field (color range 120–130 mmHg). Note 
that examples are shown for the low/high-resolution pair of 1.0/0.5 mm isotropic. 
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(patch). To compensate for imbalances between fluid and static tissue 
regions within a singular patch, the MSE was calculated separately for 
each region, respectively. To avoid network overfitting, an L2 regula
rization term was also included. The complete loss function was thus 
given as 

loss = lMSE− vessel + lMSE− non− vessel + λ
∑N

i=1
w2

i (2)  

where lMSE− vessel and lMSE− non− vessel are the voxel-wise MSE loss in fluid 
and static tissue, respectively. λ is a coefficient regularizing the network 
weights wi, assigned to 5 ⋅10− 7 after empirical evaluation of the overall 
loss vs. the network weights. Note that this differs from the original 
4DFlowNet work (Ferdian et al., 2020), from which an additional ve
locity gradient loss was removed, and the L2 regularization added, 
respectively (all based on preliminary, empirical training and data 
evaluations). 

2.2. Training and testing data 

To train the super-resolution network, sets of low and high- 
resolution flow images needed to be collected. Whilst acquired, 
matched, integer pairs of clinical 4D Flow MRI data would represent a 
theoretically ideal training set, in practice it is very difficult to obtain 
such high-resolution, high-SNR, artifact-free in-vivo ground truth data 
suitable for training. Instead, we here propose a separate set of synthetic 
4D Flow MRI originating from patient-specific cerebrovascular flow 
simulations. To improve clinical relevance, simulated data is combined 
with reference in-vivo scans by (1) transfer of realistic noise levels from 
in-vivo data to the simulated velocity sets, and (2) incorporation of 
relevant in-vivo magnitude images as complement to the simulated ve
locity sets (with reference magnitude images manually co-registered to 
the simulated sets); all to liken the utilized simulated training data to 
that of clinically acquired 4D Flow MRI datasets. 

2.2.1. Patient-specific in-silico data 
As a basis for training, anatomically accurate patient-specific CFD 

models of the arterial cerebrovasculature were used, providing both 
realistic velocity, flow, and reference pressure fields data (see Schol
lenberger et al. for complete model details (Schollenberger et al., 2021), 
and Fig. 2 for an illustrative model overview). 

In short, models were created using a combination of patient-specific 
image sets, including T1-weighted MRI, time-of-flight (TOF) MRI, 2D 
phase contrast (PC) MRI, and MRI arterial spin labeling (ASL) (Schol
lenberger et al., 2020). Anatomical segmentations of the vasculature 
from the aortic root to the circle of Willis (CoW) were derived by 
combining T1-weighted MRI (mapping the aortic root to the carotid 
bifurcation) and TOF MRI (mapping the carotid bifurcation to the CoW). 
As inflow boundary condition, a pulsatile velocity profile derived from 
PC-MRI was prescribed at the inlet of the aortic root. Further, each outlet 
was coupled to a 3-element lumped parameter Windkessel model and 
calibrated using a combination of PC-MRI, non-selective ASL perfusion, 
and cuff pressure data (Schollenberger et al., 2021). 3D models were 
meshed using tetrahedral elements, with the incompressible 
Navier-Stokes equations solved iteratively using a stabilized 
finite-element formulation. Nodal velocity and pressure data was 
extracted after periodicity had been reached (≥4 cardiac cycles). The 
modeling and analysis were performed using the validated open-source 
framework CRIMSON (Arthurs et al., 2021). Model accuracy and 
patient-specific behavior were validated against vessel-specific ASL, 
with excellent agreement reported between modelled and measured 
cerebrovascular blood distributions. For a detailed description of model 
setup and validations, please see Schollenberger et al. (Schollenberger 
et al., 2021). 

Data from four different image sets were generated: 

Subject 1 presenting without evidence of cerebrovascular disease, 
although exhibiting an incomplete CoW through right and left pos
terior communicating artery hyperplasia. 
Subject 2 presenting with severe stenosis in the right proximal in
ternal carotid artery (ICA, 70–99% based on velocity criteria from 
duplex ultrasound) and a complete CoW. 
Subject 3a presenting with a bilateral carotid stenosis (80–90% in the 
right proximal ICA, and 60% in the left proximal ICA, based on CTA 
image criteria), and a CoW exhibiting right P1 segment and distal 
right vertebral artery hypoplasia. 
Subject 3b being the same subject as 3a after surgical re-opening of 
the stenosis at the right proximal ICA. 

From the above, synthetic 4D Flow MRI data were generated by 
sampling the nodal CFD output onto a uniform voxelized image grid. 
With the aim of covering varying spatial scales, data was generated for 
spatial samplings of dx = 1.5, 1.0, 0.75, 0.5, and 0.375 mm isotropic, 
respectively (allowing for high/low resolution pairs of 1.5/0.75; 1.0/ 
0.5; and 0.75/0.375 mm). A time step of dt = 10 ms was used in order to 
increase the amount of input data for training. Data were consistently 
extracted for a region-of-interest (ROI) centered around the intracranial 
vessels. An illustration of one of the utilized models is shown in Fig. 2. 

2.2.2. Cerebrovascular in-vivo data 
Using a cohort of 8 healthy volunteers (2 women, 6 men, 55 ± 18 

years), MRI acquisitions were performed at 3T (Siemens Magnetom 
Skyra, Erlangen, Germany) using a 20-channel head/neck coil. 
Centering a ROI around the CoW, acquisitions started with a TOF MRA 
sequence (TR = 21 ms; TE = 3.6 ms; flip angle = 18◦), followed by 4D 
Flow MRI (prospective k-t GRAPPA dual-venc (130/45 cm/s) acquisi
tions (Schnell et al., 2017), dt = 95–104 ms). Flow images were acquired 
at two different resolutions: dx = 1.1 mm isotropic, and dx = 0.8 mm 
isotropic. Scan times were 10–15 min for all sequences, respectively. In 
all instances, data was corrected for concomitant gradient fields, eddy 
currents, and noise. All clinical acquisitions followed institutional re
view board (IRB) approval and informed consent. 

2.2.3. Patch generation 
To enhance clinical relevance of the training data, synthetic 4D Flow 

MRI from Section 2.2.1 were transformed into clinical-level equivalents. 
In short, realistic velocity-to-noise ratios (VNR) were extracted from the 
clinically acquired data in Section 2.2.2, equaling approximately VNR =
5.67 ± 1.64 at dx = 1.1 mm, and VNR = 2.97 ± 0.78 at dx = 0.8 mm. 
With simulated data from Section 2.2.1 treated as effective phase in
formation, and with clinically acquired magnitude data from Section 
2.2.2 used as reference, clinical-level noise was added to the synthetic 
4D Flow MRI through k-space downsampling, extracting complex 
numbers from the synthetic phase and clinical magnitude images, 
respectively. Note that such noise was added to the low-resolution 
dataset only, resulting in a network tasked not only with increasing 
resolution, but also removing noise. 

To generate a larger number of training sets from the limited (n = 4) 
number of models, the FOV was split into 3D patches of restricted spatial 
extent. Specifically, from each temporal frame patches of 123 voxels 
were extracted from random positions within the FOV (enforcing a 
minimum flow region of >5%). Additionally, patches at different reso
lution pairs (1.5/0.75 mm; 1.0/0.5 mm; 0.75/0.375 mm; as per Section 
2.2.1) were used to train the network, effectively increasing the internal 
resolution and different vessel sizes learned by the network. The training 
was thus performed in a supervised fashion, with both low and high- 
resolution 3D patches exposed to the network during training. Visuali
zation of the distribution of patches is shown in Fig. 2. For every patch, 
data augmentation by rigid cartesian rotations (90/180/270◦) was 
applied to avoid directional bias, with the number of rotations deter
mined during preliminary data evaluation (additional levels of rotations 
were not assessed considering computational demands during training). 
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Data from Subjects 1 and 2 were selected for training with 10 patches 
per temporal frame selected generating a total of 42,900 patches. Sub
ject 3a was selected for validation, with 2 patches per frame selected 
generating a total of 2730 patches. Subject 3b was withheld completely 
for testing. Based on preliminary analysis, training was performed for 60 
epochs to reach empirical convergence, with the aforementioned 
continuous validation tests and incorporated weight regularization uti
lized to avoid overfitting. With training performed on a Titan X GPU 
with 12GB memory, each epoch lasted approximately 30 min, rendering 
complete training in about 30 h. Super-resolved velocity fields were 
predicted on a patch-basis, with complete volumes reconstructed by 
stitching patches together. At the low-resolution input, patches were 
extracted with a stride of s = n - 4 voxels in each Cartesian direction, 
with n being an arbitrary patch size configurable during inference. As a 
result, two voxels from each side of the patch were overlapping with 
neighboring patches. At the super-resolved output, these overlaps were 
therefore discarded to avoid edge artifacts. Note that 2r voxels were 
stripped from each patch side, reducing data to the patch center, with r 
being the selected upsampling ratio. 

2.3. Validation of super-resolution performance, and recovery of 
cerebrovascular relative pressure 

2.3.1. In-silico validation 
To validate performance of the super-resolution network, the in-silico 

models and corresponding synthetic 4D Flow MRI data from Section 
2.2.1 was utilized. Performance was evaluated with respect to both 
super-resolved velocity fields and derived flows, as well as functional 
recovery of relative pressures using coupled physics-informed image 
processing. 

2.3.1.1. Super-resolution velocity and flow validation. For the super- 
resolved velocity fields, linear regression analysis was performed 
against reference high-resolution velocity data from the CFD analysis, 
assessing Cartesian velocity components and velocity magnitudes 
separately. Bland-Altman plots of the same data were also extracted to 
assess potential network bias. For general quantification, assessment of 
root mean square error (RMSE), cosine similarity, absolute magnitude 
error, and relative magnitude error were all performed, with the latter 
extracted as per 

ε =
1
N

∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Δv2

x + Δv2
y + Δv2

z

√

|v|
(3)  

with Δv2
x , Δv2

y , and Δv2
z being Cartesian velocity components. 

Furthermore, flow rates through three different planes cutting 
through sections of the right ICA, mid-ICA, and MCA were also 
compared between super-resolved and high-resolution reference syn
thetic 4D Flow MRI data. Quantification of RMSE and relative error, 
respectively, were also performed against high-resolution reference flow 
from the CFD analysis. 

For both velocity and flow, differences between low, high, and super- 
resolved datasets were statistically quantified using a two-sided Wil
coxon rank sum test using a significance level of p < 0.05. 

2.3.1.2. Super-resolution relative pressure validation. A key component of 
our study was to assess whether network-based super-resolution images 
also enabled accurate extraction of conjunctive, functional relative 
pressures. A variety of methods exist to derive relative pressures from 
image velocity data, each with specific method assumptions and appli
cability in the cerebrovascular space. Here we use the virtual work- 
energy relative pressure (vWERP) method, which allows for arbitrary 
probing through narrow and bifurcating structures (Marlevi et al., 
2019), with catheter-based validation underlining the method’s poten
tial. vWERP has also been applied in a cerebrovascular setting, 

indicating promising abilities whilst highlighting the importance of 
sufficient spatial resolution (Marlevi et al., 2021b). 

With details provided in previous work (Marlevi et al., 2019), vWERP 
originates from a virtual work-energy form of the Navier-Stokes equa
tions, derived by introducing an auxiliary virtual field w, and evaluating 
the resulting expression over the fluid domain of interest, Ω. Doing so, 
relative pressures can be derived as: 

Δp = −
1
Q

(
∂Ke

∂t
+Ae +Ve

)

(4)  

with 

Ke = ρ
∫

Ω

v⋅w dΩ;Ae = ρ
∫

Ω

(v⋅∇v)⋅w dΩ;Ve = μ
∫

Ω

∇v : ∇w dΩ;Q

=

∫

Γi

w⋅n dΓ (5) 

Here, each term represents different virtual energy components, 
including virtual kinetic energy (Ke), virtual advective energy rate (Ae), 
virtual viscous energy dissipation (Ve), and the virtual flow (Q) going 
through a selected inlet plane (Γi). Introducing w as a divergence-free 
field with w = 0 at all domain wall boundaries, relative pressures can 
then be extracted directly from the imaged flow field v. 

Using vWERP, relative pressures were estimated over four different 
cerebrovascular sections in each synthetic 4D Flow MRI dataset, 
respectively: left / right ICA, going from the cranial end of the cervical 
ICA to the mid-section of the petrous ICA, and left / right ICA-middle 
cerebral artery (MCA), going from the mid-section of the petrous ICA 
to midway along the M1-segment of the MCA. Based on previous anal
ysis (Marlevi et al., 2021b), estimations were performed on low/high 
resolution pairs of 1.0/0.5 and 0.75/0.375 mm, as well as on corre
sponding super-resolution data. In all instances, data were extracted 
with temporal sampling of dt = 40 ms, to liken a clinically realistic 
acquisition. 

Just as in Section 2.3.1.1, linear regression analysis was performed 
for super-resolved relative pressures against reference high-resolution 
pressure field data originating from the simulated CFD output. Bland- 
Altman plots were also extracted to assess potential estimation bias. 
For general quantification, assessment of RMSE, cosine similarity, and 
relative error was also performed. Consistently, differences between 
low-, high-, and super-resolved datasets were statistically quantified 
using a two-sided Wilcoxon rank sum test with significance level of p <
0.05. 

2.3.1.3. Comparison to alternative super-resolution approaches. To 
further quantify the performance of the proposed cerebrovascular super- 
resolution network, results were compared to a few alternative image 
processing approaches proposed to achieve super-resolution conversion 
on acquired image sets. Specifically, upsampled super-resolution ve
locity images were derived using:  

• Bilinear interpolation  
• Sinc interpolation (by zero padding in k-space)  
• The original 4DFlowNet (trained exclusively using aortic patch data) 

Here, 1. and 2. served as alternative deterministic super-resolution 
interpolation approaches, utilized in previous work to benchmark 
learned super-resolution performance (Ferdian et al., 2020). Further, 3. 
was included to assess the added value of the cerebrovascular re-training 
outlined in Section 2.2, as well as serve as a super-resolution compari
son. For each approach, super-resolved velocities and relative pressures 
were derived and quantified as per Sections 2.3.1.2 – 2.3.1.1. 

2.3.2. In-vivo implementation 
Adding to the validation in Section 2.3.1, super-resolved velocity 
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fields were also generated and assessed in the clinical 4D Flow MRI data 
from Section 2.2.2. Super-resolution upsampling was performed by a 
factor of two on all datasets, converting 1.1 to 0.55 mm, and 0.8 to 0.4 
mm, respectively. Specifically, this was performed to convert both 
datasets into a domain where no resolution dependence was to be ex
pected with respect to derived relative pressure estimates (≤0.5 mm 
required as per Marlevi et al. (Marlevi et al., 2021)). 

2.3.2.4. Estimation of super-resolution velocity and flow. Native and 
super-resolved flow fields were qualitatively compared to assess visual 
correspondence. Although data was not acquired in integer resolution 
pairs, through-plane flow rates at the proximal section of the left and 
right MCAs were still compared between resolution sets to quantify 

differences between native and super-resolved resolutions, as well as 
changes in velocity-to-noise ratio (VNR). 

2.3.2.5. Estimation of super-resolution relative pressure. To assess relative 
pressures in the in-vivo data, similar ICA-MCA sections as the ones used 
in the in-silico analysis were identified. To achieve this, vessel segmen
tation was first performed using a previously published analysis 
framework (Vali et al., 2019). Second, inlet and outlet planes for the 
relative pressure estimations were positioned based on relevant 
anatomical landmarks along the right and left ICA and MCA, with planes 
visually co-aligned between resolutions (1.1 and 0.8 mm, respectively). 
With planes and segmentations created, vWERP was used to extract 
relative pressures in all subjects. Whilst lacking reference pressures, 

Fig. 3. Comparison between low resolution (LR), high resolution (HR), and super resolution (SR) images at three different intersecting planes (A-C) and three 
different regional sections (D-F) all through the ICA-MCA. Insets are showing the selected regions in magnified form and with views rotated to highlight velocity 
vectors. Comparison of flow rates through the intersecting planes (A-C) are also shown. Note that the model insert at the bottom left is shown dorsally. 
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extracted measures were compared over different resolutions, assessing 
linear correlations and Bland-Altman plots between the different sets 
(with and without super-resolution, respectively). Differences between 
datasets were statistically quantified using a two-sided Wilcoxon rank 
sum test with a significance level of p < 0.05. 

3. Results 

3.1. In-silico validation of super-resolution 4D flow MRI 

3.1.1. Super-resolution velocity and flow validation 
Complete evaluation was performed on the one test subject (Subject 

3b), using 1 mm input data (low resolution, LR) to generate super- 
resolution equivalents at 0.5 mm (super resolution, SR), comparing 
output quality against high-resolution (HR) reference data at the same 
0.5 mm resolution. As apparent in Fig. 3, significant noise reduction is 
achieved in the SR velocity fields. Furthermore, SR flow rates indicate 
slight overestimation at the proximal-most (A) section (mean shift of 
− 0.33 ± 0.14 mL/s), whilst showing a similar but opposite underesti
mation of flow in the more distal (B) and (C) sections (0.34 ± 0.16 mL/s, 
and 0.33 ± 0.12 mL/s, respectively). Relative differences are however 
kept <10.3% over the evaluated sections (Fig. 3 and Table 1), and no 
statistical difference can be inferred when comparing SR and reference 
HR data (p = 0.94 across the complete cardiac cycle). 

Isolating peak flow rates in all models, slight error reduction is seen 
for conversion from LR (RMSE = 0.74 mL/s, relative error = 9.0 ± 6.2%) 
to SR (RMSE = 0.56 mL/s, relative error = 6.6 ± 4.7%), however, 

neither LR nor SR data differs significantly from the HR reference (p =
1.00 for SR vs. HR; p = 0.70 for LR vs. HR). 

Fig. 4 shows linear regression plots and Bland-Altman representa
tions for generated super-resolution velocities. In general, excellent 
correlations are observed between SR and HR velocities, with linear 
regression slopes and correlation coefficients of k>0.91 and R2>0.95 
reported for the vessel core region (all voxels apart from the outermost 
fluid layer), and k>0.90 and R2>0.72 for the vessel wall region (the 
outermost layer of fluid voxels). For the vessel core, no statistical dif
ference can be inferred between SR and HR data (p>0.15 across all 
velocity components). For the vessel wall, significant differences are 
observed in the out-of-plane direction (p>0.46 for vx and vy; p = 0.007 
for vz). 

Slightly lower visual correspondence are seen for velocity magni
tudes (k = 0.82 and R2=0.78 for core; k = 0.69 and R2=0.44 for wall), 
with both core and wall velocities differing statistically from the HR 
reference (p<0.001). Still, the Bland-Altman output seems to support the 
quality of the results, with minimal bias indicated (consistent deviations 
of <0.02 m/s). 

Isolating peak velocity magnitudes, measures in both vessel core 
(RMSE = 0.08 m/s, relative error = 11.0 ± 13.6%, cosine similarity =
0.99 ± 0.07) and vessel wall regions (RMSE = 0.16 m/s, mean absolute 
error (MAE) = 0.12 ± 0.11 m/s, and cosine similarity = 0.95 ± 0.12) 
confirm the trends noted above. Similar numbers are also observed for 
0.75/0.375 mm resolution sets, as shown in Appendix B. 

3.1.2. Super-resolution relative pressure validation 
Fig. 5 shows linear regression and Bland-Altman plots for estimations 

of relative pressure across different resolutions and all models (example 
relative pressure traces are also given in Appendix C). Overall, signifi
cant underestimation is observed at LR (1 mm, p<0.001 for LR vs. SR), 
while accurate estimates are reported at the HR (0.5 mm) setting. 
Importantly, distinct improvements in functional relative pressures are 
observed for the super-resolved velocity fields as compared to the LR 
input: relative error in peak relative pressure decreasing from 23.3 ±
14.9% at LR, to 11.0 ± 7.3% at SR, with 5.1 ± 2.3% at reference HR. 
Similarly, the RMSE for the entire time series goes from 1.1 ± 1.7 mmHg 
at LR, to 0.3 ± 0.2 mmHg at SR, compared to 0.2 ± 0.1 mmHg at HR. 
Conversion into SR also mitigates any statistically significant difference 

Table 1 
Flow rate measurements on Subject 3b for the right MCA, mid-ICA, and ICA. For 
all sections, results were measured by averaging 3 parallel cross-sectional slices.  

Plane LR flow 
rate [mL/s] 

SR flow rate 
[mL/s] 

HR flow 
rate [mL/s] 

SR-HR flow 
rate [mL/s] 

Rel. diff. 
[%] 

A 2.71 ± 1.1 2.80 ± 1.1 3.13 ± 1.2 − 0.33 ± 0.1 10.3 ±
0.9 

B 5.63 ± 2.6 6.29 ± 2.9 5.95 ± 2.8 0.34 ± 0.2 5.8 ±
0.5 

C 5.24 ± 2.4 5.83 ± 2.7 5.50 ± 2.6 0.33 ± 0.1 6.4 ±
1.2  

Fig. 4. Top: Regression plot for each of the velocity components (vx, vy, and vz) and velocity magnitude between ground truth and super-resolved image during the 
peak flow for in-silico test case (Subject 3b). Bottom: Bland-Altman plot for each of the velocity components during peak flow. The plots show 5% of the data points 
(randomly selected) within the vessel core (black) and vessel wall (red), respectively. 
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against the HR data (p = 0.08 for SR vs. HR). Quantitative output for 
ICA-MCA sections across all different models are given in Table 2. 

The above is confirmed in Fig. 5 with conversion from LR to SR 
increasing the linear regression slope from k = 0.56 to 0.99, representing 
a virtual 1:1 correlation to ground truth relative pressures (k = 0.98 at 
HR for reference). Likewise, the mean bias shift in the LR set (mean shift 
of − 0.85 ± 1.43 mmHg) is significantly reduced by conversion into SR 
data (mean shift of − 0.17 ± 0.30 mmHg). The HR data observes no 
estimation bias (mean shift of 0.03 ± 0.22 mmHg). Notice that similar 
improvements are observed when converting 0.75 mm base resolution 
sets into super-resolution equivalents (at 0.375 mm), with complete data 
for this analysis shown in Appendix B. 

3.1.3. Comparison to alternative super-resolution approaches 
For the comparison against alternative image processing approaches, 

complete results are provided in Appendix D. In brief, super-resolved 
velocities obtained by deterministic bilinear interpolation show higher 
deviations from ground truth HR data, with linear regression slopes and 
correlation coefficients consistently lower than what was observed with 
the cerebrovascular 4DFlowNet (k>0.70 and R2>0.56, and k>0.42 and 

R2>0.37 observed for vessel core and wall regions, respectively). Sta
tistical differences between bilinear interpolation and HR reference 
velocities can also be inferred for some vessel core entries (p < 0.001 for 
both vx and vmag). Similar deviations are also observed for the trained 
aortic network with accuracy lower than the cerebrovascular 4DFlow
Net (k>0.73 and R2>0.62, and k>0.51 and R2>0.35 observed for vessel 
core and wall regions, respectively) and with statistical differences 
inferred against reference HR data for the velocity magnitude entries 
(p<0.004 for both core and wall vmag). In comparison, super-resolved 
velocities obtained by deterministic sinc interpolation exhibits compa
rable performance to the cerebrovascular 4DFlowNet, even out
performing the learned approach in singular velocity entries (k>0.93 
and R2>0.88, and k>0.66 and R2>0.79 observed for vessel core and 
wall regions, respectively). As for the cerebrovascular 4DFlowNet, the 
sinc interpolation shows no statistical differences against HR data in the 
vessel core (p>0.20 across all velocity components), however, de
viations are inferred in the out-of-plane direction of the vessel wall 
component (p>0.79 for vx and vy; p = 0.002 for vz). 

Continuing into estimations of cerebrovascular relative pressures, 
key results are provided in Fig. 6. As shown, all alternative approaches 
exhibit varying degrees of underestimation bias as compared to the 
reference HR data (k = 0.66 and a mean bias shift of − 0.82 ± 1.13 
mmHg for bilinear interpolation; k = 0.87 and a mean bias shift of − 0.31 
± 0.48 mmHg for sinc interpolation; k = 0.87 and a mean bias shift of 
− 0.41 ± 0.58 mmHg for the aortic network). Results are significantly 
different from HR reference results for bilinear interpolation (p<0.001) 
and the aortic network (p = 0.003), however, no such inference was 
observed for the sinc interpolation data (p = 0.15). Nevertheless, peak 
relative pressures estimated by deterministic sinc interpolation are 
consistently higher than what was reported for the cerebrovascular 
4DFlowNet approach (relative error of 25.0 ± 7.3%, 9.6 ± 5.6%, and 
14.8 ± 11.9%; RMSE of 1.0 ± 1.1 mmHg; 0.4 ± 0.5 mmHg; and 0.5 ±

Fig. 5. Linear regression (top row) and Bland-Altman plots (bottom row), comparing relative pressure estimates to reference CFD equivalents using low resolution 
data (LR, 1 mm, left column), high resolution data (HR, 0.5 mm, middle column), and super-resolution data (SR, converting 1 mm to 0.5 mm, right column). The 
colors depict different data sets (training in blue (Subject 1 and 2), validation in red (Subject 3a), testing in green (Subject 3b)). 

Table 2 
Image-based peak relative pressure measurements through the right ICA-MCA 
section for all different subjects.  

Model LR peak Δp 
[mmHg] 

SR peak Δp 
[mmHg] 

HR peak Δp 
[mmHg] 

SR-HR peak 
Δp [mmHg] 

Rel. 
diff. 
[%] 

1 7.39 13.93 13.11 14.04 0.82 
2 6.78 12.97 12.51 13.00 0.46 
3a 2.51 2.91 2.81 2.88 0.10 
3b 2.35 2.80 2.66 2.71 0.14  
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0.6 mmHg; for bilinear, sinc, and aortic network, respectively). Com
plete data for the above is provided in Appendix D. 

3.2. In-vivo implementation 

3.2.1. Estimation of super-resolution velocity and flow 
For the in-vivo dataset, visual inspection confirms qualitative 

improvement with regards to noise reduction and data appearance of the 
generated super-resolved 4D Flow MRI data (see Fig. 7). Specifically, 
VNR show a 4-times increase in the 0.55 mm SR data (going from VNR 
= 5.67 ± 1.64 at dx = 1.1 mm to VNR 24.20 ± 11.28 at dx = 0.55 mm; 
p<0.001), and a 3-times increase in the 0.4 mm SR data (going from 
VNR = 2.97 ± 0.78 at dx = 0.8 mm to VNR 9.29 ± 4.25 at dx = 0.4 mm; 
p<0.001). 

Assessing flow rates through the left and right MCAs, the clinical base 
resolution data indicated a flow rate range of 0.65 to 7.13 mL/s and peak 
flow rates of 4.96 ± 1.52 mL/s at dx = 1.1 mm, compared to a slightly 
reduced range of 0.67 to 5.53 mL/s and peak flow rates of 3.47 ± 1.01 
mL/s at dx = 0.8 mm. Converting to SR equivalents (dx = 0.55 mm and 
0.4 mm, respectively) flow rates are only modestly modified, with slight 
downregulation observed in both datasets (flow range of 0.58 to 6.93 
mL/s and peak flow rates of 4.39 ± 1.56 mL/s at dx = 0.55 mm; flow 
range of 0.64 to 5.13 mL/s and peak flow rates of 3.32 ± 0.91 mL/s at 
dx = 0.4 mm). 

3.2.2. Estimation of super-resolution relative pressure 
Relative pressures were derived for all in-vivo subjects and sections. 

Overall, estimates were within the range of − 0.6 to 6.0 mmHg for the 
1.1 mm data, with peak relative pressures at 2.9 ± 1.6 mmHg, compared 
to a range of − 0.1 to 6.8 mmHg for the 0.8 mm data, with peak relative 
pressures at 3.8 ± 1.8 mmHg. Converting to SR, the ranges changes with 

estimates getting closer to one another: SR data at dx = 0.55 mm (input 
at dx = 1.1 mm) exhibiting a range of − 0.7 to 5.9 mmHg with peak 
relative pressures at 2.6 ± 1.4 mmHg; SR data at dx = 0.4 mm (input at 
dx = 0.8 mm) exhibits a range of − 0.5 to 4.3 mmHg with peak relative 
pressures at 2.9 ± 1.1 mmHg. Note that variations between individual 
subjects are still present in the super-resolved datasets. 

Although lacking in-vivo reference pressure, Fig. 8 shows linear 
regression and Bland-Altman plots comparing LR and HR data to its SR 
equivalents. At base resolutions (LR vs. HR) a systematic bias shift in 
relative pressure is observed between the two resolutions (k = 0.64; R2 

= 0.81; mean shift = − 0.93 ± 0.93 mmHg; p<0.001). Converting to 
super-resolved equivalents, the shift is reduced, although without 
completely recovering a 1:1 correlation between the two datasets (k =
0.81; R2 = 0.77; mean shift = − 0.47 ± 0.72 mmHg; p<0.001). 

4. Discussion 

In this study, we evaluated the utility of quantitative super- 
resolution 4D Flow MRI for the accurate assessment of cerebrovascu
lar hemodynamics. Specifically, we showcased how - through a two-step 
approach of using a re-trained deep residual network (4DFlowNet) and a 
subsequent physics-informed image processing algorithm (vWERP) - 
super-resolved intracranial velocity fields, regional flows, and func
tional relative pressures can all be recovered from low-resolution input 
data, with the proposed approach effectively mitigating estimation 
biases otherwise observed in the input images. With non-invasive ce
rebrovascular assessment intrinsically complicated by the narrow and 
tortuous vasculature, our results highlight the potential of quantitative 
super-resolution 4D Flow MRI to provide accurate functional cerebro
vascular hemodynamic assessment in a clinical setting. 

Fig. 6. Linear regression (top row) and Bland-Altman plots (bottom row), comparing relative pressure estimates to reference CFD equivalents using a few alternative 
super-resolution approaches including bilinear interpolation (left column), sinc interpolation (middle column), and the original 4DFlowNet trained exclusively using 
large aortic flow patches (right column). The colors depict different data sets (training in blue (Subject 1 and 2), validation in red (Subject 3a), testing in green 
(Subject 3b)). 
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4.1. In-silico validation of cerebrovascular super-resolution 4D flow MRI 
to quantify velocity, flow, and relative pressure 

In-silico super-resolved flows and velocity fields both conform closely 
to high-resolution reference data. For super-resolved velocities, slightly 
reduced accuracy was identified along near-wall voxels as well as for 
velocity magnitudes. For near-wall voxels, the behavior is similar to 
what has been previously reported (Rutkowski et al., 2021), and is not 
entirely surprising: near-wall voxels suffer from reduced input infor
mation (being surrounded by ‘information-depleted’ static tissue), and 
will be inherently linked to reduced signal quality. Dedicated neural 
networks have been explored for the recovery of near-wall velocities in 
2D flow data (Wang et al., 2020), although application in 4D Flow MRI 
data remains to be performed. For velocity magnitudes, the slight 
reduction in accuracy can instead be attributed to magnitudes not being 
represented as a separate output channel, with the network instead 
focusing on recovering individual Cartesian velocity components sepa
rately. Errors in individual velocity components will thus be amplified 
when a magnitude operation is performed, in-line with our obtained 
results. 

In addition to the recovery of super-resolved velocities, a major part 
of our work focused on whether super-resolution conversion would 
enable accurate estimation of functional relative pressures; an entity 

directly dependent on utilized spatial resolution (Marlevi et al., 2021b). 
As reported in Section 3.1.2), the sequential combination of a deep 
learning based (4DFlowNet) super-resolved images and a 
physics-informed analysis algorithm (vWERP) allow for accurate esti
mation of cerebrovascular relative pressures. This not only indicates the 
utility of the vWERP algorithm but also highlights that the 4DFlowNet 
architecture allows for accurate estimation of the complete fluid me
chanical environment, with precise recovery of both velocity and ve
locity gradients needed to accurately extract relative pressures. 
Importantly, although variations in bias are observed for different 
modelled subjects at low resolution (more pronounced bias seen for the 
training subjects 1–2, shown as blue glyphs in Fig. 5), super-resolution 
conversion consistently resolves relative pressures across all four 
tested models and anatomies. 

Another benefit of the repurposed 4DFlowNet is the ability to 
significantly improve VNR, showcased in both our in-silico and in-vivo 
results. Deterministic multi-venc sequences have been explored to 
enhance VNR (Schnell et al., 2017), however, using a post-processing 
super-resolution approach in principle enables maintained signal qual
ity even at reduced scan times, as highlighted in other image-based work 
(Rutkowski et al., 2021). It is worth noting that although denoising is 
desired for a range of different use-cases (simplifying segmentation; 
improving direct velocity or flow estimations; etc.), its impact on the 
relative pressures estimates derived by vWERP is comparably minor. In 
fact, it has in previous work been shown how vWERP – even at 
high-noise configurations – enables accurate recovery of cerebrovascu
lar relative pressures given sufficient spatial sampling (Marlevi et al., 
2021), owing largely to the method’s integrative nature and use of a 
numerical, noise-free virtual field. As such, the denoising component of 
4DFlowNet is rather incorporated for simplified clinical use, although its 
direct role in e.g., improving segmentation accuracy remains to be 
assessed. 

4.2. Comparative performance of cerebrovascular super-resolution 4D 
flow MRI 

The performance of the cerebrovascular 4DFlowNet was also 
compared to a set of alternative super-resolution approaches. As shown 
in Section 3.1.3, although variations exist in the quality of super- 
resolved velocities (with distinct underestimations observed for both 
deterministic bilinear interpolation and aortic 4DFlowNet), it is within 
the derivation of functional relative pressures that the main differences 
can be observed. Specifically, although all alternative approaches reduce 
some of the estimation bias observed in the LR input data, neither of the 
approaches can fully mitigate the underestimation. This should be put in 
contrast to the cerebrovascular 4DFlowNet approach, where cerebro
vascular relative pressure can be recovered with the same level of ac
curacy as shown in the reference in-vivo data. This finding is particularly 
interesting when comparing the deterministic sinc interpolation to the 
cerebrovascular 4DFlowNet: both approaches recover velocities at 
similar accuracies; however, cerebrovascular 4DFlowNet captures rela
tive pressures more accurately. The reason for this discrepancy lies in 
the non-trivial relationship between velocity and relative pressure given 
by the governing Navier-Stokes equations. Mapping flow to pressure 
goes beyond accurately reconstructing individual velocity components, 
but also requires accurate recovery of spatiotemporal velocity gradients 
and the spatial distribution of velocities which all contribute to the 
global momentum balance. In fact, if assessing the overall momentum 
balance across all alternative approaches (evaluating the Navier-Stokes 
equations in each flow voxel within the ROI), the cerebrovascular 
4DFlowNet data satisfies the governing momentum balance to a higher 
degree than the sinc interpolated data in all subjects, corroborating the 
findings observed with respect to recovered relative pressures. This 
finding speaks to the strengths of dedicated learned approaches, where 
the underlying hemodynamics of the flow fields are embedded in the 
super-resolution procedure. This is also in line with previous work 

Fig. 7. Visual comparison of an in-vivo case at low (LR) and super-resolution 
(SR) given for both sets of dx=1.1 and 0.55, and 0.8 and 0.4 mm, respec
tively. Improvements in VNR are apparent in the super-resolved phase images 
(A) as well as in the flow visualizations (B). Direct velocity vectors comparison 
are given for a section through the right MCA for the paired low resolution (1.1 
mm)/super-resolution (0.55 mm) in (C), and for the paired low resolution (0.8 
mm)/super-resolution (0.4 mm) in (D), with vectors shown projected onto a 
visual2D plane. In general, broad view of the velocity vectors only reveal minor 
differences between resolution sets, although detailed view reveals velocity 
vectors conforming more to the anatomy of the vessel in the super-resolved 
images, including at the near-wall regions. 
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indicating the added value of learned approaches for achieving effective 
flow image enhancements, ranging from data denoising and divergence- 
free corrections to spatiotemporal image enhancement tasks (Rutkow
ski et al., 2021; Fathi et al., 2020; Kissas et al., 2020; Ferdian et al., 
2020). On the contrary, supervised networks might have limited appli
cability when being brought beyond the well-defined setting in which 
they were trained, not least being highlighted by our need to re-train the 
original aortic 4DFlowNet into the cerebrovascular space (see details 
below in Section 4.3). Still, the larger impact of such data dependence 
will have to be explored in separate, future work. 

As a note on comparative performance, it is worth highlighting that 
the presented cerebrovascular 4DFlowNet and vWERP approach was not 
compared against alternative learned network approaches. Whilst such 
head-to-head evaluations would be of direct interest to the community, 
its numerical implementation remains non-trivial with key alternative 
networks not yet made publicly available. The varying settings in which 
alternative networks have been trained also make direct comparison 
cumbersome and validated benchmark networks remain lacking within 
the specific field of cerebrovascular flow imaging (notes on the 

conceptual layout of our presented approach, as compared to alternative 
state-of-the-art learned approaches, are however provided in Section 
4.5). 

Lastly, whilst we attempt super-resolution conversion by means of 
image processing alone, a variety of approaches exist where super- 
resolution is achieved by means of refined image acquisition, utilizing 
e.g. sub-pixel acquisition shifts or iterative reconstruction algorithms to 
enhance resulting image resolution (Van Reeth et al., 2012). Whilst such 
methods cannot be applied in the setting of standard 4D Flow acquisi
tions, a comparison between pre- and post-processing super-resolution 
techniques would be a valuable topic for future work. 

4.3. The value of re-training 4DFlowNet for cerebrovascular usage 

The comparison of different approaches (Section 3.1.3) also high
lights the importance of re-training, where distinct performance differ
ences are observed when comparing the original (aortic) and repurposed 
(cerebrovascular) 4DFlowNet. Here, it is important to appreciate the 
fundamental differences in input training data that exist between the 

Fig. 8. Linear regression and Bland-Altman plots for the in-vivo cerebrovascular 4D Flow MRI data, showing the relationship between relative pressure estimated at 
base resolutions (ΔP, upper plots, comparing 1.1 mm and 0.8 mm data) and at equivalent super-resolutions (ΔP*, lower plots, comparing super-resolved 0.55 mm vs. 
0.4 mm data). 
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aortic and the cerebrovascular 4DFlowNet. In the original work, patches 
containing purely aortic flows from CFD were shown during training, 
with hemodynamics dominated by transient flows (Lamata et al., 2014) 
guided through a large vessel structure. On the contrary, cerebrovas
cular hemodynamics is a joint resultant of transient, advective, and 
viscous behavior (Marlevi et al., 2021b), with flow restricted by the 
narrow, tortuous vasculature. Additionally, the cerebrovascular training 
data contain synthetically generated magnitude images, as such carrying 
more realistic image properties and noise characteristics. Hence, the 
original network was never exposed to patches containing the same 
image characteristics (with tissue regions), or entailing similarly small 
vessels or tortuous near-wall gradients, and performance is likely 
reduced when attempting cerebrovascular data recovery. 

The fact that re-training resolved estimation bias also demonstrates 
that the core 4DFlowNet architecture is robust to different types of 
flows, and that it is rather the information contained in the training data 

(i.e., vessel sizes, noise characteristics) that determines final perfor
mance. Furthermore, we introduced different resolution pairs as training 
data, which effectively enriched the internal resolution learned by the 
network. On top of that, changing the resolution while keeping the patch 
size in the same dimension (12-voxel cube) acted as a surrogate for the 
different vessel sizes seen by the network. This also indicates that further 
re-training might be necessary if attempting super-resolution imaging in 
yet another cardiovascular domain (e.g., intracardiac flow fields), 
although as long as anatomical structures are similar in size (e.g., ce
rebral vs. hepatic vessels) maintained accuracy is plausible. To over
come the need for constant retraining, one could envision combining 
training data from multiple domains to create a network handling both 
large and small vessel anatomies, as well as fast and slow flows. The 
performance of such a network, however, remains to be determined. 

Fig. A.1. General 4DFlowNet architecture, being in principle identical to the original published work on large aortic flows (Ferdian et al., 2020). The network uses 
two input paths including both magnitude (top) and phase (bottom) information, split into separate Cartesian components. A central upsampling layer is then 
surrounded by a series of convolutional blocks including symmetric padding and a rectifier non-linearity (ReLU) layer. Network output is then split into three 
channels, generating super-resolved phase (velocity) information in all Cartesian directions, respectively. 

Fig. B.1. Regression plot for each of the velocity components (Vx, Vy, and Vz) and velocity magnitude between ground truth and super-resolved image during the 
peak flow for the in-silico test case (Subject 3b), using the additional resolution set of 0.75 mm (LR) and 0.375 mm (SR). Bottom: Bland-Altman plot for each of the 
velocity components during peak flow. The plots show 5% of the data points (randomly selected) within the vessel core (black) and vessel wall (red), respectively. 
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4.4. In-vivo feasibility of cerebrovascular super-resolution 4D flow MRI to 
quantify flow, velocity, and relative pressure 

In Section 3.2, super-resolution images and functional relative 
pressure estimations were performed in a select in-vivo cohort. Although 
ground truth high-resolution scans or reference pressure measurements 
were unavailable, the behavior indicated in-silico seems replicated in- 
vivo. Specifically, super-resolved flow fields did not introduce any bias 
shifts, and estimates of both flows and relative pressures indicate slight 
convergence at upsampled resolutions (note that both datasets were 
compared at a super-resolution state, to enable comparisons at a refer
ence resolution where no pronounced bias should prevail with respect to 
estimated relative pressures (Marlevi et al., 2021)). Nevertheless, even 
though derived relative pressure magnitudes coincide with what has 
been reported in previous cerebrovascular work (Han et al., 2016), a 
desired 1:1 relation between resolutions is not achieved. Here, compa
rably coarse temporal resolution (dt≥95 ms), cardiovascular variations 
between scans, or temporal intra-scan mismatch could all contribute to 
this slight discrepancy. Further validation of in-vivo work would be 
beneficial to understand the clinical translation of the combined 
4DFlowNet and vWERP approach. 

4.5. Contextualizing cerebrovascular super-resolution 4D flow MRI 

It is worth contrasting our repurposed 4DFlowNet to previously 
published work within the same space. Whilst few studies exist 
attempting super-resolution or noise-free recovery of directly imaged 
flow (Ferdian et al., 2020; Rutkowski et al., 2021), only a handful have 
attempted the same for functional hemodynamic recovery. Kissas et al. 
(Kissas et al., 2020) proposed a PINN-based network to recover absolute 
pressure in simplified arterial model sections; however, application in 
cerebrovascular geometries was never attempted. Shit et al. (Shit et al., 

2021) similarly proposed the PINN-based ‘Velocity-to-Pressure’ net; 
however, super-resolution abilities were never included. In comparison, 
our work combines the super-resolution utility of 4DFlowNet with the 
functional recovery of the physics-informed deterministic vWERP 
approach, being previously benchmarked across different cardiovascu
lar domains, including the cerebrovasculature (Marlevi et al., 2021a, 
2019, 2021b). 

Continuing into the cerebrovascular space, a few very recent works 
have shown how merging physics-informed analysis, machine learning, 
and imaging can have particular promise for improving non-invasive 
cerebrovascular assessment. Fathi et al. (Fathi et al., 2020) used a 
patient-specific PINN to recover regional flow and pressure from input 
4D Flow MRI, promising virtually unrestricted spatiotemporal re
finements on recovered velocity fields. However, PINN-based methods 
are still under active development, with a key main limitation being its 
dependency on certain pre-defined initial conditions (domain definition, 
boundary settings, etc.). Similarly, Rutkowski et al. (Rutkowski et al., 
2021) recently presented a CNN-based network to reconstruct denoised 
high resolution 4D Flow MRI in a cerebrovascular setting, using 
patient-specific in-vitro models for both training and testing. However, 
this method did not offer super-resolution utilities, and did not seem to 
qualitatively remove noise to the extent observed in our results. One 
reason to this might be that the network did not consider the inclusion of 
magnitude image as an input, providing additional information relating 
to vessel and static tissue region definitions. Along these very same lines, 
our work also highlights the significant potential of super-resolution 4D 
Flow MRI in the cerebrovascular space. Within this setting, our study 
extends these previous works by showing how a two-step application of 
super-resolution utilities with the physics-informed vWERP algorithm 
provides accurate recovery of relative pressures, overcoming inherent 
resolution biases otherwise observed in clinical-level image sets (Mar
levi et al., 2021b) and allowing for the accurate recovery of this 

Fig. B.2. Linear regression (top row) and Bland-Altman plots (bottom row), comparing relative pressure estimates to reference CFD equivalents using low-resolution 
data (LR, 1 mm, left column), high-resolution data (HR, 0.5 mm, middle column), and super-resolution data (SR, converting 1 mm to 0.5 mm, right column). The 
colors depict different model sets (training in blue (Subject 1 and 2), validation in red (Subject 3a), testing in green (Subject 3b)). 
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Fig. C.1. Estimated relative pressures through the right ICA-MCA section in all subjects (left to right showing Subject 1, Subject 2, Subject 3a, and Subject 3b). In 
each graph, relative pressure estimates are derived from low-resolution data in blue (LR, 1 mm), high-resolution data in red (HR, 0.5 mm), super-resolved data in 
green (SR, converting 1 mm to 0.5 mm). True estimates are given by voxelized equivalents of the CFD pressure field generated at the HR sampling in black. 

Fig. D.1. Top: Regression plot for each of the velocity components (Vx, Vy, and Vz) and velocity magnitude between ground truth and super-resolved image during 
the peak flow for the in-silico test case (Subject 3b). Bottom: Bland-Altman plot for each of the velocity components during peak flow. The plots show 5% of the data 
points (randomly selected) within the vessel core (black) and vessel wall (red), respectively. All data was generated using deterministic bilinear upsampling. 
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established biomarker through the challenging cerebrovascular space. 
Whilst technical differences exist in utilized network design or loss 
function, and whilst direct head-to-head comparisons are still lacking, 
the two-step approach presented in our work, and the above-reviewed 
works, all point to the increasing interest shown in network-driven 
super-resolution 4D Flow MRI, with the cerebrovascular space being a 
prime target of where such utilities can have direct clinical impact. 

4.6. Limitations 

Several limitations are worth pointing out. Firstly, clinical in-vivo 
validation against catheter-based pressure data remains to be 

performed. Acquiring invasive pressure data in the cerebrovascular 
space is challenging as intracranial arterial catheterization still awaits 
regulatory approval in the US. Furthermore, clinical validation of super- 
resolution utilities is inherently limited in clinical practice. With both 
4DFlowNet and the vWERP algorithm validated in other domains 
(Marlevi et al., 2021a, 2019), its potential in improving cerebrovascular 
quantification is evident. Still, experimental validation in 
patient-specific in-vitro models (as recently attempted in other denoising 
high-resolution work (Rutkowski et al., 2021)) or in a pre-clinical setting 
would bring important additional information as to the clinical utility of 
the presented work. 

Secondly, a modest number of in-silico models were used for training, 

Fig. D.2. Top: Regression plot for each of the velocity components (Vx, Vy, and Vz) and velocity magnitude between ground truth and super-resolved image during 
the peak flow for the in-silico test case (Subject 3b). Bottom: Bland-Altman plot for each of the velocity components during peak flow. The plots show 5% of the data 
points (randomly selected) within the vessel core (black) and vessel wall (red), respectively. All data was generated using deterministic sinc upsampling. 

Fig. D.3. Top: Regression plot for each of the velocity components (Vx, Vy, and Vz) and velocity magnitude between ground truth and super-resolved image during 
the peak flow for the in-silico test case (Subject 3b). Bottom: Bland-Altman plot for each of the velocity components during peak flow. The plots show 5% of the data 
points (randomly selected) within the vessel core (black) and vessel wall (red), respectively. All data was generated using the original aortic 4DFlowNet. 
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where additional data could enhance network versatility. In particular, 
including subjects exhibiting significant stenoses within the proximal 
cerebrovascular ROI could add important hemodynamic variations for 
the utilized training sets, although such models would have to be con
structed, validated, and incorporated, in future separate work. Similarly, 
combining the original aortic and cerebrovascular datasets could 
generate a more general-purpose utility, although the performance of 
such would have to be evaluated separately. 

Thirdly, it is worth noting that the training of the super-resolution 
network also depends on the accuracy of the utilized CFD models to 
capture realistic cerebral flow and pressure. Realistic CFD modeling of 
cerebral flow is generally challenging due to difficulties in assigning 
patient-specific boundary conditions. In this work, however, we over
came these challenges by using a previously presented CFD calibration 
strategy based on cerebral perfusion (non-selective ALS) and flow (PC- 
MRI) data (Schollenberger et al., 2021). Specifically, the utilized CFD 
models were validated by comparing the blood supply in the CoW 
against territorial perfusion data from vessel-selective ALS, where 
observed high correlations underline the accuracy and applicability of 
the utilized models. 

Fourthly, it should be noted that the utilized network was trained 
using a range of hyperparameters (patch size, learning rate, batch size, 
loss function regularization weight, etc.) whos optimal values could still 
be further optimized. For most of these, set values were chosen empir
ically from preliminary testing, or simply kept constant from previous 
training rounds (Ferdian et al., 2020). Moreover, newer network ar
chitectures (attention, transformer, graph networks, etc.) may provide 
further improvements. Still, the satisfactory performance observed for 
both velocity and relative pressure speaks to the validity of our settings, 
even if continued systematic fine-tuning could add incremental value. 
Our work thus provides a fundamental basis for learning 
super-resolution flow data using synthetic data, alone. 

Lastly, practical limitations exist in the increasing data storage 
required by the super-resolution conversion. Due to the uniformly 
sampled data representation, a two-fold resolution increase leads to an 
eight-fold increase in disk space usage. Moreover, the data representa
tion of 4D Flow MRI (e.g., one image cube per velocity component) 
further complicates the problem. A more flexible data representation, 
such as adaptable grid representations or graph-based networks (San
chez-Gonzalez et al., 2020) may offer improved future possibilities cir
cumventing this issue and may be explored in future work. 

4.7. Clinical outlook and future work 

The expansion of quantitative hemodynamic imaging for cerebro
vascular applications promises improved clinical abilities (Leng et al., 
2014; Penn et al., 2011; Rivera-Rivera et al., 2018), and the usage of 
super-resolution 4D Flow MRI presents an effective way of quantifying 
such hemodynamic markers in the brain, with our work highlighting its 
accurate recovery of both direct and functional hemodynamic metrics. 
Importantly, super-resolution imaging circumvents intrinsic obstacles 
otherwise related to non-invasive cerebrovascular flow quantification 
(limited spatial coverage; challenging vascular anatomies; etc.), and its 
clinical potential is therefore particularly evident within this vascular 
domain. 

Numerous, future directions can be envisioned to extend and clarify 
the capabilities highlighted in our study: additional training data 
expanding network capabilities, modified architecture improving pre
dictions in near-wall regions, or extended clinical validation against 
acquired 4D Flow MRI or experimentally derived invasive catheter data. 
Clinically oriented studies evaluating the potential of super-resolution 
imaging to improve clinical risk stratification by means of improved 
relative pressure estimations could also be envisioned in the future. 
Nevertheless, our data highlights the potential of super-resolution 4D 
Flow MRI and coupled physics-informed image analysis in the cere
brovascular space. 

5. Conclusions 

In this study, we have shown how dedicated super-resolution 4D 
Flow MRI and physics-informed image analysis can in sequence be 
effectively used to accurately quantify cerebrovascular hemodynamics, 
including regional velocities, flows, and functional relative pressures. 
Using dedicated patient-specific in-silico data, we have shown how the 
existing 4DFlowNet network can be effectively repurposed into the ce
rebrovascular space, successfully converting low-resolution input data 
into high-resolution equivalents with maintained precision and effective 
noise-reduction. Furthermore, in sequential combination with the 
physics-informed deterministic image analysis algorithm vWERP, we 
have shown how conversion into super-resolution data successfully re
duces estimation biases in functional relative pressures otherwise 
observed in the utilized low-resolution input data. Lastly, implementa
tion in an exemplary in-vivo cohort shows how improvements in 
velocity-to-noise-ratio, preserved flow, and converging relative pres
sures estimates are achievable in a clinical setting. 
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Appendices 

A. Network architecture 

The deep residual network structure utilized in this paper is depicted 
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in Fig. A.1. In principle, this is substantially the same architecture as the 
previously published 4DFlowNet for large aortic flows (Ferdian et al., 
2020). Key differences are highlighted in Section 2.1.1, but to re-iterate, 
key points include:  

1. Patch input size was changed to a 12-voxel cube.  
2. Linear output layers were utilized  
3. Gradient terms were removed from the loss function. 

Note that training setup, hyperparameters, and trained weights are 
all publicly available at https://github.com/EdwardFerdian/ 
4DFlowNet). 

B. Validation of super-resolution performance over additional resolution 
sets 

Corroborating the results in Section 3.1.1 and 3.1.2 similar analysis 
was performed over a second set of in-silico resolutions converting input 
data at dx = 0.75 mm to super-resolution data at dx = 0.375 mm 
(comparing against reference high-resolution data sampled directly 
from the equivalent CFD solution). 

B.1. Estimation of super-resolution velocity 
As shown in Fig. B.1 and in agreement with the results provided 

across the 1 mm/0.5 mm resolution pair in the main manuscript, 
excellent correlations are observed between super-resolution and high- 
resolution data over all velocity components. Consistently, linear 
regression slopes and correlation coefficients are k>0.91 and R2>0.96 
for the vessel core region, and k>0.95 and R2>0.74 for the vessel wall 
region. The Bland-Altman output also indicates no bias shifts introduced 
by the super-resolved data, with deviations of <0.05 m/s with limits of 
agreements <0.15 m/s across all components and regions. Regarding 
the distinction between SR and HR data, only the out-of-plane direction 
indicate statistically significant differences (p>0.24 for vx and vy; p <
0.03 for vz). Isolating peak velocity magnitudes, measures in both vessel 
core (MAE = 0.07 ± 0.06 m/s, relative error = 14.38 ± 0.06%, cosine 
similarity 0.99 ± 0.06) and vessel wall regions (MAE = 0.12 ± 0.11 m/s 
and cosine similarity 0.94 ± 0.11) similar with the 0.5/1.0 mm 
counterpart. 

B.2. Estimation of super-resolution relative pressure 
Furthermore, Fig. B.2 shows how conversion into super-resolution 

data mitigates underestimation in relative pressures, with a linear 
regression slope of changing from k = 0.83 at low resolution to k = 0.98 
at super-resolution (to be compared with k = 1.02 at reference high- 
resolution). Bland-Altman assessments also supplement this same data, 
where the spread in estimates is reduced with super-resolution, albeit 
with a slightly remaining underestimation bias (mean shift of − 0.25 ±
0.57 mmHg at low resolution; mean shift of − 0.24 ± 0.24 mmHg at 
super-resolution; mean shift of 0.08 ± 0.17 mmHg at reference high 
resolution; the difference between SR vs. HR remaining statistically 
significant at p = 0.002). 

C. Example of super-resolution relative pressure traces 

Complementing Section 3.1.2, Fig. C.1 shows example output traces 
for the right ICA-MCA sections of all four models, respectively. As seen, 
conversion to super-resolution data mitigates the underestimation bias 
otherwise observed in the low-resolution input data. 

D. Comparative performance of 4DFlowNet and alternative super- 
resolution approaches 

D.1. Estimation of super-resolution velocity 
With primary results provided in Section 3.1. of the main manu

script, Figs. D.1–D.3 present linear regression plots and coupled Bland- 

Altman representations for super-resolved cerebrovascular velocities 
using bilinear interpolation, sinc interpolation, and the original aortic 
4DFlowNet, respectively. As described briefly in Section 3.1.3, the 
determinist bilinear interpolation renders the highest deviation from 
ground truth data across all velocity components, with a linear regres
sion of in average k = 0.79 (vessel core) or k = 0.62 (vessel wall). Sta
tistical differences between bilinear interpolation and HR reference 
velocities can also be inferred for some vessel core entries (p < 0.001 for 
both vx and vmag). 

The same goes for the original aortic 4DFlowNet, with a linear 
regression of about k = 0.88 (vessel core) or k = 0.78 (vessel wall); again 
lower than the re-trained equivalent and with statistical differences 
inferred against reference HR data for the velocity magnitude entries 
(p<0.004 for both core and wall vmag). Neither bilinear interpolation nor 
the aortic 4DFlowNet are however associated with any large-scale esti
mation bias when it comes to super-resolved velocities (mean bias shift 
= − 0.04 ± 0.10 mmHg (vessel core) and 0.0 ± 0.12 mmHg (vessel wall) 
for bilinear interpolation; − 0.03 ± 0.11 mmHg (vessel core) and 0.01 ±
0.18 mmHg (vessel wall) for aortic 4DFlowNet, respectively). Echoing 
primary results reported in the main manuscript, increasing deviation 
are also evident with regard to peak velocity in both vessel core and 
vessel wall regions for both alternative approaches (for bilinear inter
polation, vessel core: MAE = 0.12 ± 0.09 m/s, relative error = 33.7 ±
60.9%, cosine similarity = 0.99 ± 0.10, vessel wall: MAE = 0.14 ± 0.11 
m/s, cosine similarity = 0.95 ± 0.11. For aortic 4DFlowNet, vessel core: 
MAE = 0.11 ± 0.08 m/s, relative error = 16.0 ± 19.9%, cosine simi
larity = 0.99 ± 0.08; vessel wall: MAE = 0.15 ± 0.11 m/s, cosine sim
ilarity = 0.93 ± 0.11). 

On the contrary, super-resolution utilizing sinc interpolation shows 
comparatively accurate velocity recovery, with results non-inferior to 
the cerebrovascular 4DFlowNet approach. Across all velocity compo
nents, linear regression is given at an average k = 0.95 (vessel core) or k 
= 0.85 (vessel wall), and no dominant estimation bias is observed 
against high resolution reference (mean bias shift = − 0.01 ± 0.04 
mmHg (vessel core) and 0.01 ± 0.07 mmHg (vessel wall)). No statistical 
difference can be inferred against HR reference data in the vessel core 
(p>0.20 across all velocity components), however, deviations are 
inferred in the out-of-plane direction of the vessel wall component 
(p>0.79 for vx and vy; p = 0.002 for vz). These results are also underlined 
by the errors at peak velocity (vessel core: MAE = 0.06 ± 0.04 m/s, 
relative error = 22.6 ± 83.9%, cosine similarity = 1.00 ± 0.05, vessel 
wall: MAE = 0.09 ± 0.07 m/s, cosine similarity = 0.97 ± 0.08). 

D.2. Estimation of super-resolution relative pressure 
Coupling to D.1 above and Fig. 6 in the main manuscript, recovery of 

relative pressures was also derived using the alternative approaches for 
super-resolution imaging. As described in Section 3.1.3, higher de
viations are reported from ground truth high-resolution data across all 
alternative approaches: bilinear interpolation (k = 0.66, R2 = 0.99), sinc 
interpolation (k = 0.87, R2 = 1.00), and aortic 4DFlowNet (k = 0.87, R2 

= 0.99). Also, in contrast to the re-trained network (see Section 3.1.2), 
the alternative approaches are all associated with persistent relative 
pressure estimation bias (mean bias shift = − 0.82 ± 1.13, − 0.31 ± 0.48, 
and − 0.41 ± 0.58 mmHg for super-resolved data using bilinear inter
polation, sinc interpolation, and aortic 4DFlowNet, respectively; with 
results being significantly inferred for bilinear interpolation and the 
aortic network). Lastly echoing the data in the main manuscript, peak 
relative pressure estimates are given at a relative error of 25.0 ± 7.3%, 
9.6 ± 5.6%, and 14.8 ± 11.9%, and a MAE of 0.9 ± 1.0 mmHg, 0.3 ±
0.4 mmHg, and 0.4 ± 0.5 mmHg for bilinear interpolation, sinc inter
polation, and aortic 4DFlowNet, respectively. 
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