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Ventricular-arterial coupling plays a key role in the physiologic function of the
cardiovascular system. We have previously described a hybrid lumped-finite element
(FE) modeling framework of the systemic circulation that couples idealized FE models
of the aorta and the left ventricle (LV). Here, we describe an extension of the
lumped-FE modeling framework that couples patient-specific FE models of the left
and right ventricles, aorta and the large pulmonary arteries in both the systemic and
pulmonary circulations. Geometries of the FE models were reconstructed from magnetic
resonance (MR) images acquired in a pediatric patient diagnosed with pulmonary arterial
hypertension (PAH). The modeling framework was calibrated with pressure waveforms
acquired in the heart and arteries by catheterization as well as ventricular volume
and arterial diameter waveforms measured from MR images. The calibrated model
hemodynamic results match well with the clinically-measured waveforms (volume and
pressure) in the LV and right ventricle (RV) as well as with the clinically-measured
waveforms (pressure and diameter) in the aorta and main pulmonary artery. The
calibrated framework was then used to simulate three cases, namely, (1) an increase
in collagen in the large pulmonary arteries, (2) a decrease in RV contractility, and (3)
an increase in the total pulmonary arterial resistance, all characteristics of progressive
PAH. The key finding from these simulations is that hemodynamics of the pulmonary
vasculature and RV wall stress are more sensitive to vasoconstriction with a 10% of
reduction in the lumen diameter of the distal vessels than a 67% increase in the proximal
vessel's collagen mass.

Keywords: pulmonary arterial hypertension (PAH), cardiac mechanics, vascular mechanics, image-based
modeling, ventricular-arterial coupling

INTRODUCTION

Ventricular-arterial coupling plays a vital role in the physiologic function of the cardiopulmonary
circulation as well as in the evolution of cardiovascular diseases, such as pulmonary arterial
hypertension (PAH) (Borlaug and Kass, 2011; Ky et al, 2013). In physiologic conditions, the
arterial compliance (endowed by arterial wall tissue constituents) and the ventricular dynamic
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stiffness (inherent from the contraction of myocytes) confine
the dynamic pressure variation to a physiological range to
prevent end organ damage, while providing sufficient blood flow
to meet oxygen demand of the body under varying workload
(Borlaug and Kass, 2011). In pathological conditions, such as
PAH, malfunction of one compartment (e.g., microcirculation) in
the cardiopulmonary circulation may affect other compartments
(e.g., ventricle) through a positive feedback loop that is driven by
the tight coupling of ventricular and arterial systems, ultimately
leading to end-stage heart failure. A modeling framework
that captures the complex ventricular-arterial coupling would
help elucidate the mechanisms governing the progression
of PAH.

Existing mathematical modeling frameworks describing
ventricular-arterial coupling in the cardiopulmonary circulation
can be broadly classified as either a lumped parameter or
a multi-scale finite element (FE) modeling framework. In a
lumped parameter modeling framework, the ventricular-arterial
coupling is described by an electrical analog representation of
the cardiovascular system (Ursino, 1998; Smith et al.,, 2004).
While such modeling framework is computationally inexpensive,
it cannot directly take into account detailed geometrical and
microstructural features associated with pathological conditions
in the ventricles and arteries. In a hybrid lumped-FE modeling
framework, a FE model describing either ventricular mechanics
(Kerckhoffs et al., 2007; Shavik et al., 2017, 2019) or arterial
hemodynamics (Lau and Figueroa, 2015; Zambrano et al,
2018) is coupled to lumped-parameter representation of the
other compartments to provide a detailed description of the
cardiovascular system. To overcome limitations associated with
simplified representations of cardiovascular components, we
previously introduced a hybrid lumped-FE modeling framework
that bidirectionally couples FE models of the aorta and left
ventricle (LV) mechanics in a closed-loop circulatory system
(Shavik et al., 2018). Based on an idealized geometry of the LV
and aorta, the modeling framework is able to reproduce pressure,
arterial diameter, and LV volume waveforms found in a healthy
individual. The modeling framework, however, considers only
the systemic circulation and does not take into account the
pulmonary circulation.

Here, we describe the extension of our earlier framework
(Shavik et al., 2018) in which image-based FE models of the large
pulmonary arteries, aorta, and heart (including both ventricles)

Abbreviations: AO, Aorta; EDPVR, End-diastolic Pressure Volume Relationship;
EE Ejection Fraction; ESPVR, End-systolic Pressure Volume Relationship; FE,
Finite Element; HR, Heart Rate; LA, Left Atrium; LPA, Left Pulmonary Artery;
LV, Left Ventricle; LVEDV, Left Ventricular End-diastolic Volume; LVEE, Left
Ventricular Ejection Fraction; LVESV, Left Ventricular End-systolic Volume;
LVFW, Left Ventricular Free Wall; MAP, Mean Aortic Pressure; MPA, Main
Pulmonary Artery; mPAP, Mean Pulmonary Arterial Pressure; MR, Magnetic
Resonance; PA, Pulmonary Artery; PAH, Pulmonary Arterial Hypertension; PC-
MRI, Phase-Contrast Magnetic Resonance Image; PCWP, Pulmonary Capillary
Wedge Pressure; PV, Pressure-Volume; pv, Pulmonary Veins; PVR, Pulmonary
Vascular Resistance; RA, Right Atrium; RPA, Right Pulmonary Artery; RV,
Right Ventricle; RVEDV, Right Ventricular End-diastolic Volume; RVEE, Right
Ventricular Ejection Fraction; RVESV, Right Ventricular End-systolic Volume;
RVFW, Right Ventricular Free Wall; sa, Systemic Arteries; SMC, Smooth Muscle
Cells; sv, Systemic Veins; WU, Wood Unit.

are coupled bidirectionally in a closed-loop multi-scale FE
modeling framework of the cardiopulmonary circulation. The
multi-scale framework was calibrated using in vivo clinical
measurements of the anatomy, deformation, and hemodynamics
from a PAH pediatric patient. Using the calibrated model, we
further investigate how changes associated with the mechanical
behavior and microstructure of the microcirculation, large
pulmonary arteries, and right ventricle (RV), consequent of PAH
progression, affect each other.

METHODS

This study was approved by the University of Michigan Board
of Review (HUMO00117706), and informed consent was obtained
from the parents/guardians of the patient.

Patient History

Clinical data was prospectively acquired in a 11-year-old female
patient who was diagnosed with PAH. The patient had an
elevated mean pulmonary arterial pressure (mPAP) of 59 mmHg
with normal pulmonary capillary wedge pressure (PCWP) of 6
mmHg and elevated pulmonary vascular resistance (PVR) of 13.5
WU, falling within the clinical classification of PAH (mPAP > 20
mmHg, PCWP < 15 mmHg, and PVR > 3 WU) (Simonneau
et al, 2019). She has family history of chronic obstructive
pulmonary disease and PAH.

Data Acquisition

Anatomical and hemodynamic data were obtained using
magnetic resonance (MR) imaging and arterial catheterization.
Cine MR images of the short- and long-axis views of the
ventricles were acquired at 30 time points in the cardiac cycle.
Using the cine MR images, left and right ventricular endocardial
surfaces were segmented with the medical image analysis
software MeVisLab (www.mevislab.de) to acquire ventricular
volume waveforms. Cardiac-gated gradient echo MR images
of the vascular anatomy were acquired in the diastolic phase.
Luminal area waveforms were also acquired with phase-
contrast MR images (PC-MRI) at the ascending aorta and main
pulmonary artery. Arterial catheterization was performed to
acquire pressure waveforms in the LV, RV, main pulmonary
artery (MPA), and aorta. The ventricular volume and pressure
waveforms were synchronized to reconstruct pressure-volume
(PV) loops (Xi et al., 2016; Shavik et al., 2019). Hemodynamic
and cardiovascular function metrics of the PAH patient are listed
in Table 1.

Biventricular and Vascular Geometries

Anatomical models of the LV, RV, aorta, and pulmonary
arteries (PA) (consisting of the main, left, and right pulmonary
arteries) were reconstructed from the acquired MR images.
The biventricular model was reconstructed from images that
correspond to the point in the cardiac cycle where ventricular
pressures were lowest during filling (Geuzaine and Remacle,
2009). Furthermore, anatomical models of the aorta and
large pulmonary arteries were reconstructed using the blood
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TABLE 1 | Hemodynamic measurements of PAH patient.

Quantities Values
HR, bpm 75
LVEDV, ml 72
LVESV, mi 25
LVEF, % 65
MAP, mmHg 68
RVEDV, ml 77
RVESV, mi 30
RVEF, % 61
RVEDV/LVEDV 1.07
mPAP, mmHg 59
PCWP, mmHg 6

FIGURE 1 | Reconstruction of biventricular model (left) and large proximal
arteries (right) from cine MR images.

flow modeling software CRIMSON (www.crimson.software)
(Figure 1).

Closed Loop Circulatory System

The biventricular, aorta and pulmonary artery FE models
were coupled through a closed loop lumped-parameter
circulatory model that describes both systemic and pulmonary
circulations (Figure 2). The modeling framework consists of
eight compartments with four cardiovascular components
(ventricle, atrium, artery, and vein) each in the systemic and
pulmonary circulations. Conservation of total blood mass in the
circulatory model requires the net change of inflow and outflow
rates of each compartment to be related to the rate of change of
the volume by the following relations

dViv()
d = qmv () — q:zv(t), (1a)
V()
dt = qav (t) — %a(t); (1b)
dVa(t)
dt - QSa (t) - QSv(t)» (1C)

dav,
%(” = o (1) = qn (1), (1d)
av,
%(t) = qtv (t) - q;;vv(t); (le)
t
AVpa(£)
Zt = Gpvr () — Gpa(t) (1f)
dV,,(t
Zt( ) _ pa (D) — qpu(1), (1g)
dVia(t)
% = qpv (1) — G 1) (1h)

In Equation (1), Viv, Vs Ve, Vra> Vry, Vpa: VPV’ and Vg
are the volumes of the eight compartments with the subscripts
denoting the LV, systemic arteries (sa), systemic veins (sv), right
atrium (RA), RV, pulmonary arteries (pa), pulmonary veins
(pv), and left atrium (LA), respectively. Flow rates at different
segments of the circulatory model are denoted by gy, qavs qsa>
svs Gtv> Gpvvs Gpa> and gpy.

Systemic and pulmonary arteries and veins were modeled
using their electrical analogs based on Ohm’s law. At each
segment, the flow rate depends on the pressure gradient and
resistance to the flow as described in the following equation

o = | I when, Pa(®) = P
i =1 when, Pra(t) < Pryv(f)
Py () — Py
qav(t) — W W]’lel’l, PLV(t) 2 Psa(t) , (2b)
0 when, Pry(t) < Pg,(t)
P, (t) — P, (t
Ga () = sa (£) sv()) 20)
RSﬂ
P, (t) — P
g (D) = 2 (t) — Pra (t) , (2d)
RSV
o = | PO when, Pra() = Prv(d)
W= when, Pra(t) < Pry(t)’
PRy (t) — Ppa(t)
qu(t) N e when, Pry(t) > Ppa(t) ; (26
0 when, Pry(t) < Ppa(t)
Ppa () — Ppy (1)
() = —mM | 2
Gpa (1) Rpa (2g)
Ppyy (1) — Pra ()
P
y() = —"FT 2h
Gpv (1) Ry (2h)

In Equation (2), Ry, Rays Ry, and Ry, are the resistances
associated with the mitral, aortic, tricuspid, and pulmonary
valves, respectively. The valves are each represented by a diode
that only permits one-way flow as in previous studies (Punnoose
etal., 2012; Shavik et al., 2019). The vessel resistances are denoted
by Rsa Revs Rpa> and Ryy, respectively. To describe the compliance
of the systemic and pulmonary vessels, we used the following
PV relationships

st(t) - st,O

P (t) = — . (32)
Py (t) = M, (3b)
CPV
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Vra

FIGURE 2 | Schematic of the finite element ventricular-vascular coupling closed loop circulatory modeling framework.

where Vg0 and Vj,0 are the resting volumes and Cs, and
Cpy are the total compliance of the systemic and pulmonary
veins, respectively.

Contraction of the LA and RA was modeled using a
time varying elastance function that is given by the following
PV relations

Pr(t) = e(t)Pesi(Vi(1)) + (1 —e(t) Pear(Vi(2),  (4a)
where,

Pes,k(vk(t)) = Ees,k(vk(t) - VO,k)> (4b)

P (Vi) = Ag (P (ViO=Vor) 1), (4c)

In Equation (4), the subscript k denotes either LA or RA.
The volume, end-systolic elastance, and volume-intercept of
the end-systolic pressure-volume relationship (ESPVR) of the
corresponding atrium are denoted by Vi, E.k, and Vg,
respectively. The parameters Ay and By define the atrium
curvilinear end-diastolic pressure volume relationship (EDPVR)
and the driving function is defined as

% (sin [(ﬁ)t - %] + 1); 0< t < 3tmax/2

e (t) = —(t— 3fmax) > (5)
% e T ; t > 3tmax/2,

where f,,4y is the point of maximal chamber elastance and 7 is

the time constant of relaxation. The time-varying elastance model

has been shown to be able to describe atrium contraction well
(Hoit et al., 1994).

The relationships between pressures and volumes in the
biventricular unit (i.e., LV and RV), pulmonary artery and aorta
were computed from their corresponding FE models. These
relationships can be expressed as non-closed form functions.

Pry (1), Pry(t) = BV (Vv (1), Vry (), (6a)
Ppa () = fPA(Vpa(®)), (6b)
Py () = fA9 (Vi (1)) . (6¢)

Finite Element Formulation of the

Biventricular Unit

The weak form associated with the biventricular FE model
was derived based on minimization of the following
Lagrangian functional

Ly (uv, pav, Prv, Prv, €1,8v> €2,8v)

= Wpay (upy) dV — / pav Upy —1)dVv

Q0,87 Qo,Bv

=Py (Viv.cav (uBv) — Viv) + Prv (Viv.cav (u8v) — Vrv)
_Cl,BV'/ ugy dV — C2,BV'/ Xpy x upy dV,  (7)
Qo,Bv Qo,v
where Qo gy is the reference configuration of the biventricular

unit, upy is the displacement field, Pry and Pry are, respectively,
the Lagrange multipliers that constrain the LV cavity volume
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VIv,cav (uBv) to a prescribed value V- and the RV cavity volume
VRV cav (uBv) to a prescribed value Vgy (Pezzuto and Ambrosi,
2014). We note that Viy and Vgxy are prescribed from the
closed-loop circulatory model in Equation (6). The Lagrange
multiplier ppy was used to enforce incompressibility of the
tissue (i.e., Jacobian of the deformation gradient tensor ] = 1).
The vectors ¢; py and ¢, gy are Lagrange multipliers applied to
constrain, respectively, the rigid body translation (i.e., zero mean
translation) and rotation (i.e., zero mean rotation) (Pezzuto et al.,
2014). In Equation (7), Xpy denotes a material point in ¢ gy
and Wpy is the strain energy function of the myocardial tissue.
The cavity volume of the LV and RV were obtained from the
displacement field by using the following functional relationship
(k=LV or RV)

1
Vicav (UBy) = / dvi = —— /
Qinner,k 3 r

where ¢,k is the volume enclosed by the inner surface ' e, &
of the LV or RV, and n denotes the outward unit normal vector
of those surfaces. Taking the first variation of the Lagrangian
functional given in Equation (7) leads to

xpy.n day , (8)

inner,k

8Lpy = / (Pgy—ppvFpy ") : Véugy dV
Qo, BV
—/ Sppv J — 1) dV — (Pry
Qo, BV

+Pry) cof (Fpy): Véupy dV — 8Py (Viv, cav (upy)

Qo, Bv

—Viv) — 8Prv (Vrv, cav (usv) — VRrv)

—861, BV'/ upy v — 3(32) BV'/ XBV X Upy av
Qo, Bv Qo, Bv

—C, BV'/ (SuBV dv — C) BV* / XBV X SuBV dav. (9)
Qo, Bv Qo, Bv

In Equation (9), Pgy is the first Piola Kirchhoff stress tensor
and Fpy is the deformation gradient tensor. The variations
of the displacement field, Lagrange multiplier for enforcing
incompressibility and volume constraint, zero mean translation,
and rotation are denoted by 3upy, 8ppv, 8PLv, cav» OPRV cav»
8c1,py, and 8cy py, respectively. Together with the constraint
that the basal deformation at z = 0 is in-plane in
the biventricular unit, the solution of the Euler-Lagrange
problem was obtained by finding ugycH' (Q9), ppvel? (),
Prv, cav€ R, Prv, cav€ R, €1 v e R3, C)BVE R3 that satisfies

8Ly =0, (10a)
ugy (x,y, 0) .n}hm =0, (10b)
for all  SugyeH'(Q)), ppvel? (), dPrv,cav€ R,

SPRV, av€ R, 8¢y, BveE RS, 8¢y, BV E R3. The solution of
Equation (10) gives the relationship between Pry, Pry, Vrv, Vv
in Equation (6).

Mechanical Behavior of the Cardiac Tissue
Mechanical behavior of the myocardial tissue was described by an
active stress formulation in which the first Piola-Kirchhoff stress
tensor Ppy in Equation (9) was additively decomposed into a
passive and an active component, i.e.,

Pgy=Pgy, p+Ppy, s €f @ ef,. (11)

In Equation (11), Py, , is the passive stress tensor, Ppy, , is the
magnitude of the active stress, whereas ef and ey, are the local
basis vectors that define the cardiac muscle fiber directions in
the current and reference configuration, respectively. The passive
stress tensor Py, , is related to the strain energy function Wgy,,
and deformation gradient tensor Fgy by

dWBV’p
dFgy

PBV,p = (12)

A Fung-type transversely-isotropic hyperelastic strain energy
function (Guccione et al., 1991)

Way,p = %CBV (e2-1), (13a)
with
Q = by + b (ES + By, + B3, + Ey)
+ by (B}, + B2 + B} + %) (13b)

was prescribed. In Equation (13b), Ej; with (i, j) € (f s, n)
denote the components of the Green-Lagrange strain tensor
E =%(F v Fgy-I) with f, s, n denoting the myofiber, sheet and
sheet normal directions, respectively. Material parameters of the
Fung-type constitutive model are Cgy, bﬁr, by, and bfx.

To describe the active stress behavior, a previously developed
active contraction model (Kerckhoffs et al., 2003) was used. The
magnitude of the active stress Py, , was described by

I

PBV, a — iofiso (lc)ftWitCh (t) ls) (ls - lc) Ea> (14)

I
where I is the sarcomere length, [, is the length of the contractile
element, I is the sarcomere length in a prescribed reference state
(relaxed sarcomere length), and E, is the stiffness of the serial
elastic element. The function f*° (I;) denotes the dependency of
the isometrically developed active stress on . and is given by

iso _ T tanh®[ag(lc — a7)] when, I, < ay
£ (1) = { 0 when, I, > a;’ (15)

where T is a model parameter that scales the active tension. Both
ae and a; are model parameters. The time course of the active
tension development is controlled by

0 when, t <0
ftWitCh (t, ls) = { tanh? (%)tanh2 (t’"?—;‘*t) when, 0 <t < tyax
0 when, t > 0,
(16a)
tmax = b(ls - ld)- (16b)
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In Equation (16), t, is the activation rise time constant, f; is
the activation decay time constant, b relates activation duration
tmax to the sarcomere length I, and I; is the sarcomere length
at the start of the activation time, i.e., when t,,,x = 0. The time
course of the contractile element /. was expressed by an ordinary
differential equation

U _ g, (1 - 1) — 1]

ot (17)

where vy is the unloaded shortening velocity. The sarcomere
length I; was calculated from the myofiber stretch A and the
relaxed sarcomere length Iy by

A= w/efO'FBVTFBVefO R (18a)
Is = Alg. (18b)

Finite Element Formulation of the Arteries
The pulmonary artery and aorta were modeled as 3D membranes.
In the formulation that follows, the subscript k = AO denotes
the aorta and k =  PA denotes the pulmonary artery.
Similar to that of the biventricular unit, the finite element
formulation of these two arteries can be generalized from the
minimization of the following Lagrangian functional, described
in the following equation

Ly (> Prcay» €1,k €2k)

= o Wi (ur) dV_Pk,cav (Vk,cav () — Vk)
0,k

_Cl,k‘/ uj dv — Cz,k'/ Xk X U dV,
Qok Qok

where Q is the reference configuration of the arteries, u is
the displacement field and Py, is the Lagrange multiplier that
constrains the arterial cavity volume Vi ,, (4x) to a prescribed
value Vj. The vectors ¢;; and ¢, are Lagrange multipliers
applied to constrain rigid body motions. The inlet and outlets of
the arteries were constrained to move only in-plane. Therefore,
the solution of the Euler-Lagrange problem was obtained by
finding uxeH' (), Preav€ R,c1x€ R3¢ R? that satisfies

(19)

8L =0,

U (x’y’ 0) ’n|inlet, outlets =0,

(20a)
(20b)

for all SureH' (Q), SPrcw€ R8¢ 1€ R, 8¢y R3. The
solution above gives the relationships between Pp,, Vs, and
Py4, Vs, in Equations (6b) and (6¢), respectively.

Mechanical Behavior of the Vascular

Tissue

The mechanical behavior of the arteries were described by the
strain energy function Wy in Equation (21), which is given as
the sum of the key tissue constituents, namely, elastin-dominated
matrix Wy, collagen fiber families Wy .; and vascular smooth

muscle cells (SMC) Wy, (Baek et al., 2007; Zeinali-Davarani
etal, 2011),i.e.,

4
Wi = Wie+ Y Wiei + Wi

i=1

21
Strain energy function of the elastin-dominated amorphous
matrix in the arteries is given by

Cr1
2

Wie = Mge ( ) (tr (Cp) — 3), (22)

where My, is the mass per unit volume of the elastin in the
tissue, Cy 1 is a stiffness parameter and, Cy = FZFk is the right
Cauchy-Green deformation tensor associated with the arteries.

In the membrane models, four collagen fiber families were
considered. The first and second families of collagen fibers (i =
1 and 2) were oriented in the longitudinal and circumferential
directions, whereas the third and fourth families of collagen fibers
(i = 3 and 4) were oriented, respectively, at an angle a = 45° and
—45° with respect to the longitudinal axis based on a previous
study (Zeinali-Davarani et al., 2011). We assumed that the same
strain energy function for all the families of collagen fibers is
given by

Ck,2 2
Whei = Mk i [eXP [%3 (i = 1) ] - 1] :

(23)

In Equation (23), My is the mass per unit volume of ith family
of collagen fibers, )y ; is the corresponding stretch of those fibers,
and both ¢, and ¢ 3 are the material parameters that govern the
collagen stiffness. The stretch in the ith family of collagen fibers
was defined by hi; = \/ekio-Ckexio where ey is the local unit
vector that defines the corresponding fiber orientation.

Strain energy function of the SMC Wy, is given by

Ck, 2
Wiom = My 54 [exp [ck)s (o — 1) ] — 1]. (24)
4Ck’5

Here, My, is the mass per unit volume of the SMC in the tissue,
Ak is the stretch of the SMC, whereas c;4 and ¢ 5 are the
stiffness parameters. The SMC was assumed to be aligned in the
circumferential direction. Mass per unit volume for the different
constituents were calculated using following relations

Mk,e = ¢k,e,0) (253)
Mim = Grmp> (25b)
My; = ¢pi (1 — dre — Prm) P (25¢)

where ¢i ., k> Pk denote the mass fraction for elastin, SMC
and ith family of collagen fibers, respectively. Twenty percent of
the total collagen mass is assumed to be equally distributed in the
longitudinal and circumferential fiber families and the remaining
80% was distributed equally to o = 45° and —45° fiber directions.
Constitutive parameters, mass fraction of each constituent and
other parameters of the pulmonary artery and aorta membrane
models are listed in Table 2.
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TABLE 2 | Model parameters for FE models for the baseline case.

Biventricular FE model

Passive material model Cry = 280Pa, Cry = 170 Pa
Active contraction model

Circulatory model

Touv = 2000 kPa, Topy = 1800 kPa, t, = 280ms, ty = 80ms, b = 0.17 ms.um~’
Csv = 0.02 Paeml, C,, = 0.09 Paeml, R, = 125 kPasmsem|~", Ry, = 75 kPasmsemi™", Ry, = Ry, = 2 kPasmsem|~", R,, = 3.2

kPasmseml|~", Ry, = 0.9 kPaemsemi~', Ry, = 0.4 kPasmsemI~", Ry, = 2 kPasmsem|™", Vs, o = 3570ml, Vpy, 0 = 485 m

Time varying elastance model of LA
and RA

Aorta FE model

Elastin Cao,1 = 120 kPa, ¢pa0e = 0.35
Collagen families

SMC

Pulmonary artery FE model
Elastin Cpa1 = 45 kPa, ¢pae = 0.35
Collagen families

SMC Cpas = 5 kPa, Cpas = 3.5, ¢7PA,m =0.23

Ees = 60 Pa/ml, Vo = 10ml, tmax = 135 ms, T = 50ms, A = 58.67 Pa, B = 0.049 mI~"

Cao2 = 0.2kPa, caos = 8.0, paoc = 0.20 (¢a01 = 0.1¢40c, pa02 = 0.1da0,c; ¢a03 = 0.4¢40, pa0,a = 0.4¢40,c)
Cao4 = 0.08 kPa, Caos5 = 3.5, ¢AO,m =045

Cra2 = 100.0kPa, cpaz = 3.0, ¢ppac = 0.42 (ppa1 = 0.1¢pac, ppa2 = 0. 1¢pac, dpas = 0.4¢pac, dpas = 0.4¢pac)

Solution Algorithm

An explicit time integration scheme was used to solve the
ODEs in Equation (1). Specifically, compartment volumes
(Vivs Vsas Vsvs VkRa, VRv, Vpa: va, Via) at each time
t; were determined from their respective values and the
segmental flow rates (qumvs Gavs Gsas Gsvs Gtvs Gpvvs Gpa> Gpv) at
previous time t;_; in Equation (2). The computed compartment
volumes at t; were used to update the corresponding pressures
(Pras Pra> Prv, Prv, Psas Ppas Psy, Ppy). Pressures in the
atrium (Pra, Pra) and veins (Py,, Pp,) were computed from
Equations (4) and (3), respectively. On the other hand,
pressures in the LV (Pry), RV (Pry), were computed from
the FE solutions of Equation (10) for the biventricular unit
with the volumes (Vry, Vgy) at time f; as input. Similarly,
pressures in the aorta (Py;) and pulmonary artery (Ppa)
were computed from the FE solutions of Equation (20)
with their corresponding volumes (Vi Vjpq) at time t;. We
note here that (Pry, Pry, Ps, Pps) are scalar Lagrange
multipliers in the FE formulation for constraining the cavity
volumes to the prescribed values (Viy, Vv, Vi, Vpa). The
computed pressures at time f; were then used to update
the segmental flow rates in Equation (2) that will be used
to compute the compartment volumes at time tj1; in the
next iteration.

Model Parameterization and Simulation

The biventricular FE model was divided into three material
regions, namely the LV free wall (LVFW), the septum, and the
RV free wall (RVFW). Similar to a previous study (Finsberg et al.,
2018), passive stiffness C and contractility Ty were prescribed
to be the same values in the LVFW and septum (denoted as
Crv and Ty rv) and had different values in the RVFW (denoted
as Cry and Tory). In the baseline case, model parameters
were adjusted to fit the clinically measured LV and RV PV
loops, volume and pressure waveforms throughout the cardiac
cycle. Specifically, the LV and RV end diastolic pressures were
matched by adjusting the passive stiffness parameters Cry and

Cry. Stroke volume (SV) of the LV and RV were matched
by adjusting the regional contractility parameters (i.e., To_rv,
To,ry). While other model parameters can also affect the SV
(e.g., peripheral resistances Ry, and Rp, of the systemic and
pulmonary circulations as well as preload), the parameters Ty 1y
and Ty gy, which scale the active stress generated by the myofiber,
have a larger effect on the LV and RV SV, respectively. On
the other hand, the contraction model parameters t,, f; and
b were adjusted to match the time course of the volume and
pressure waveforms measured in the LV and RV. Parameters ¢,
and t; were adjusted to match the time to peak tension and b
was adjusted to achieve the desirable relaxation of the myofibers.
Circulatory model parameters (resistances and compliances)
were also adjusted to match the systolic pressure (afterload),
preload and systemic and pulmonary vein pressures. Aortic and
PA peripheral resistances (Ry;, Rps) were calibrated to match
the systolic pressures of LV and RV. The parameters related to
LA and RA time-varying elastance models were prescribed based
on a previous study (Shavik et al., 2019). Parameters related
to the aorta and PA constitutive models (that alter the vessel’s
compliance) were adjusted to match the measured pressure
waveforms, and the diameters estimated from the PC-MRI. All
the model parameters for the biventricular, aorta and PA FE
models are listed in Table 2.

The multiscale modeling framework was implemented using
FEniCS (Alnees et al., 2015). The biventricular unit was meshed
with ~7,700 tetrahedral elements based on a previous study
(Finsberg et al., 2018) showing that local fiber stress and global
features related to cardiac contraction are not sensitive to mesh
resolution beyond ~4,000 elements. Furthermore, the aorta
and pulmonary arteries FE models contain ~8,000 triangular
elements based on previous study (Zeinali-Davarani et al., 2011)
that used ~1,500 elements. Steady state PV loop was established
by running the simulation over several cardiac cycles until cycle-
to-cycle periodicity was achieved. The prescribed cardiac cycle
time (690 ms) was derived from the heart rate (87 bpm) measured
during the PC-MRI acquisition.
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Since it is known that key features of the progression of
PAH include stiffening of main PA, reduced RV contraction,
and increased distal resistance of PA (Fan et al., 1997; Shimoda
and Laurie, 2013), we used our calibrated model to investigate
how these changes affect the cardiopulmonary circulation.
Specifically, a sensitivity analysis on the parameters associated
with PAH progression was performed by simulating the following
cases: (1) a 67% increase in PA collagen mass fraction ¢ps ., (2) a
50% decrease in RV contractility To ry, and (3) a 50% increase in
the pulmonary arterial resistance Rp,.

RESULTS

Comparison Between Simulated Results

and Clinical Measurements

Model predictions of the LV and RV PV loops, volume
waveforms, and pressure waveforms in the baseline case matched
reasonably well with the clinically measured PAH patient data
described in Section Data Acquisition (Figure 3). Good overall
fitting was obtained for the volume and pressure in both the LV
and RV with the coefficients of determination R? value of 0.901
and 0.903, respectively (Figure4). Pressure waveforms in the
pulmonary and systemic circulations predicted by the model also
agree, in general, reasonably well with the measurements, except
for the diastolic pressure. The model predicted smaller diastolic
pressure in the aorta (by ~17 mmHg) and PA (by ~15 mmHg)
when compared to the measurements (Figure 3B). The simulated
ascending AO and PA diameter waveforms compared well with
the clinical measurements of the dynamic cross-sectional area
from the PC-MRI (Figure 3C). Specifically, the simulated and
clinically measured diameter waveforms in the ascending AO
are in good agreement (max. abs difference ~10%) while the
model predicted a larger change of the diameter compared to the
measurements for the MPA (max. abs difference ~28%).

Effects of the Changes in Vascular

Microstructure on Cardiac Function

Changing the mass fractions of the constituents in the PA
wall led to changes in its function, which in turn affects the
RV function. Specifically, increasing the mass fraction ¢ps . of
the collagen of PA wall by 67% (from 0.42 to 0.70) with a
corresponding decrease in the mass fraction of the elastin (from
0.35 to 0.15) and SMC (from 0.23 to 0.15) produced an increase
in the PA pressure of 10% (from 71 to 78 mmHg). The RV
systolic pressure also increased by 11% (from 68 to 76 mmHg)
correspondingly (Figure 5A). Because of the more exponential
mechanical response of the PA with higher collagen fraction,
the PA pressure also decayed more rapidly during the diastolic
phase resulting in an increased pulse pressure (from 45 mmHg
baseline to 55 mmHg) (Figure 5C). The LV and RV SV and
EF remained relatively unchanged (Figures 5A,B). In the aorta,
systolic, diastolic, and pulse pressures did not change significantly
from the baseline case (Figure 5D). The change in PA diameter
was slightly reduced when compared to baseline (Figure 5F) as
the vessel becomes stiffer with higher collagen mass fraction.
Spatially averaged RV fiber stress did not change when compared

to the baseline case. Maximum arterial wall stress located at the
bifurcation increased (~7.4%) but the spatially averaged wall
stress did not change significantly from baseline (Figure 6).

Effects of the Change in RV Contractility

on Vasculature

Decreasing the RV contractility Tory by 50% (from 1,800 kPa
baseline to 900 kPa) reduced the RV EF by 5% (from 58 to 53%)
(Figure 5A). Due to less contractile force being generated by the
RV, both RV and PA peak systolic pressure decreased by about
9% (RV: 71 to 65 mmHg; PA: 68 to 62 mmHg) (Figure 5C). In
addition, the LV EF as well as peak systolic pressure in both the
LV and aorta were slightly decreased compared to the baseline
(Figures 5B,D,E). Because of the reduced pressure, PA diameter
was slightly reduced during systole when compared to baseline
(Figure 5F). Average RV fiber stress also decreased by 37% (from
195 to 124 kPa) compared to baseline. Both maximum arterial
and spatially averaged RV wall stress were reduced by about 9%
(Figure 6).

Effects of the Change in PA Resistance
Increasing the pulmonary arterial resistance R,; by 50% led
to an increase in PA pulse pressure by 36% (from 45 to 61
mmHg), which was also accompanied by an increase in PA
systolic and diastolic pressure (Figure 5C). The RV peak systolic
pressure increased by 34% (from 71 to 95 mmHg) and the RV
EF decreased by 2% (from 58 to 56%) (Figure 5A). Due to the
higher pressure, the PA diameter waveform shifted upwards and
became higher than the baseline throughout the cardiac cycle.
Similar to the case with reduced RV contractility, LV EF as well
as peak systolic pressure in both the LV and aorta were slightly
decreased compared to the baseline (Figures 5B,D,E). A 7% (195
to 208 kPa) increase in average RV fiber stress as well as a 41%
increase in maximum arterial wall stress were also found in the
PA (Figure 6).

DISCUSSION

In order to characterize the intricate progression of PAH, we
developed the first closed-loop multiscale modeling framework
(consisting of image-based FE models of the left and right
ventricles, large pulmonary arteries, and aorta) that captures
detailed bi-directional ventricular-arterial interactions. We have
shown that our proposed model describes the cardiopulmonary
circulation reasonably well by reproducing patient-specific
measurements of (1) LV and RV PV loops, (2) LV and RV volume
and pressure waveforms, and (3) aorta and PA pressure and
diameter waveforms of a PAH patient.

This framework extends our previously developed hybrid
lumped-FE model of the systemic circulation (Shavik et al., 2018)
by including the RV, large pulmonary arteries and the pulmonary
micro-circulation (represented with a lumped model). Previous
modeling frameworks have coupled a FE biventricular model
with a lumped representation of the pulmonary circulation
(Kerckhoffs et al., 2007; Xi et al., 2016) but not with FE model of
the large pulmonary arteries. The ability to couple a FE model of
the large arteries and both ventricles in this framework enables us
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to investigate PAH progression reflected in the large pulmonary
arteries and the RV. Specifically, the framework allows us to
alter the microstructural, geometrical and mechanical behaviors
of the pulmonary arteries and characterize how these changes
affect the RV, and vice versa. Implementing 3D FE models of
the arteries in the framework also allow us to capture non-
homogeneous stress distribution in the vessels (e.g., high stress

concentration at the bifurcation of the pulmonary artery in
Figure 6) which would not be possible using lumped-parameter
models. Using the calibrated framework, we have created three
cases to simulate progressive pathological changes associated
with PAH in the (1) large pulmonary arteries (increase in collagen
mass and degradation of elastin) (Wang et al., 2013), (2) RV
(decrease in contractility due to right ventricular failure) (Naeije
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and Manes, 2014), and (3) pulmonary microcirculation (increase ~ pulmonary arterial resistance (equivalent to a ~10% reduction
in resistance due to remodeling) (Kobs et al., 2005). of the vascular lumen diameter based on Poiseuille’s law) causes

Increasing the collagen mass in the elastic proximal ejection to start at a higher pressure and the EF to be slightly
pulmonary arteries increased PA pulse pressure from baseline.  reduced in the RV. These results are broadly consistent with
This behavior is due to the stiffening of the PA, which results from  the effects on the RV measured in patients under acute hypoxia
a more exponential stress-strain behavior associated with the  (Akgiil et al.,, 2007), which shows an increase in both end-systolic
higher concentration of collagen fibers. This result is consistent  and end-diastolic volume and a slight (but not significant)
with animal experiments where an increase in PA pulse pressure  decrease in EF. The same increase in resistance also produced a
has been associated with an increase in collagen mass in PAH  significantly higher increase in the systolic PA pressure than the
(Wang et al., 2017). Furthermore, the connection between pulse  simulation with a 67% increase in collagen mass in the proximal
pressure and changes in collagen can also be found in the aorta  pulmonary arteries. These results suggest that remodeling in the
during aging, where a loss of elastin (which results in a more  microcirculation contributes more to changes in the pulmonary
collagen-dominated extracellular matrix) produces an increase  pressure than remodeling in the proximal pulmonary arteries,
in systemic pulse pressure (Safar et al., 2003). A decrease in suggesting that PAH is primarily driven by distal arterial
PA compliance that is caused by an increase in collagen mass remodeling. In summary, we have shown that isolated changes
produced an increase in RV afterload as reflected by an increase i both the arteries and ventricles as predicted by our modeling
in RV systolic pressure in our model, consistent with previous  framework lead to expected effects in the cardiopulmonary
studies (Mahapatra et al,, 2006; Gan et al., 2007). Consistent  ¢jrculation. This confirms that the modeling framework can
with our previous study (Shavik et al., 2018), the more pulsatile capture bi-directional ventricular-arterial interactions, which can

PA waveform can also be observed in the ejection phase of the (e ysed to further our understanding of PAH progression.
RV PV loop, where the pressure-volume curve became steeper

toward end-of-systole (Figure 5A). Our model did not predict
a significant reduction in the SV, which could be attributed MODEL LIMITATIONS
to a high RV end-systolic elastance in the model. We note
that a high RV end-systolic elastance has also been associated ~ Though our modeling framework is able to predict behaviors
with PAH (Vélez-Rendon et al., 2018), especially during the  that are consistent with the measurements there are, however,
compensatory phase. some limitations associated with it. First, the local myofiber
Decreasing RV contractility (by 50%) in the model, which  orientation was varied transmurally from 60° in the endocardium
reflects the transition to decompensated heart failure, produced  to —60° at the epicardium using a “rule based” method. Thus, we
an expected decrease in EF and peak systolic pressure that  did not take into account any changes in myofiber orientation
results in a substantial decrease in myofiber stress in the RV.  during RV remodeling (Hill et al, 2014) that may occur in
Reducing the RV contractility also reduces the PA peak and  PAH. Second, we have assumed a uniform wall thickness and
pulse pressures, only decreasing the arterial wall stress in the ~ homogeneous material properties for both aorta and PA in
PA slightly. Based on consensus that arterial wall stress is the  our model. We believe that this assumption contributes to the
driver for vascular remodeling (Humphrey, 2008), this result  mismatch in the MPA diameter waveforms. Third, we have
suggests that remodeling in the large pulmonary arteries may  assumed that FE models of the pulmonary arteries and aorta
attenuate the transition to the decompensated phase. This result  account for the compliance of the entire pulmonary and systemic
also suggests that negative inotropic agent targeted at the RV may  arterial system, respectively. This is a limitation because the FE
help attenuate remodeling in the PA vasculature. models are associated with only a segment of their corresponding
Lastly, increasing the distal pulmonary arterial resistance,  arterial systems. We show in a preliminary study (see Appendix)
which reflects remodeling of the distal vessels, increased  that the addition of a lumped-parameter compliance to the
pressures in the proximal PA and RV. A 50% increase in the distal ~ modeling framework can be used to provide a better match
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waveforms; (E) LV and RV volume waveforms; and (F) MPA and AO diameter waveforms.

of pulmonary artery pressure and diameter waveforms, as well
as the pressure-volume loops. Fourth, we have neglected the
dynamic behavior of the fluid and its interaction with the vessel
walls and the spatial variation of pressure waveform along the
aortic and pulmonary tree and shear stress on the luminal surface
of the vessels. We note, however, that the computed shear stress
(~Pa) is several order of magnitude smaller than the normal

traction force (pressure) on the surface of the vessel (~kPa)
and variation of peak pressure within the vessel is <10%. For
these reasons, the omission of shear traction should not affect
the computed arterial stresses. Last, the modeling framework
was calibrated using data acquired from one PAH patient.
Caution must be exercised in extrapolating results to the general
population of pediatric PAH patients.
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