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1 INTRODUCTION

The cardiovascular system transports gases (oxygen and
carbon dioxide), nutrients, enzymes, hormones, and heat
between the respiratory, digestive, endocrine, and excre-
tory systems and the cells of the body. It is the inherent
scale-linking mechanism between organ system and cellular
scales. Far from a static system, the cardiovascular system
continually changes and adapts to meet the demands of
the organism in healthy and diseased states. Hemodynamic
(blood fluid mechanic) factors including flow rate, shear
stress, and pressure forces provide the stimuli for many acute
and chronic biologic adaptations.

Local hemodynamic factors often act as stimuli to
trigger changes in cardiac output and downstream vascular
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resistance that are essential in responding to acute changes
in organ demand. For example, during exercise, the blood
flow rate established to meet the metabolic demands of
resting conditions is insufficient for the active muscles.
These muscles release metabolic products that cause the
local vessels to dilate, resulting in a decrease in the local
vascular resistance and an increase in muscle blood flow
by shunting blood from other tissues and organs. The
blood vessels upstream of those in the working muscle in
turn dilate because of increased flow. This mechanism is
hypothesized to be modulated by increased shear stress
triggering the release of nitric oxide from the endothelial
cells lining the inner surface of blood vessels experiencing
increased flow. Ultimately, the dilation of the vascular bed
supplying the working muscles reduces the overall vascular
resistance felt by the heart and would reduce systemic blood
pressure if the cardiac output remained constant. Instead,
baroreceptors, specialized pressure-sensing cells in the aorta
and carotid arteries, provide feedback to the nervous system
to increase heart rate and cardiac output to maintain blood
pressure. While blood flow rate can increase several-fold
during exercise conditions, mean blood pressure typically
changes by less than 10–20%. In summary, the hemody-
namic variables of flow rate, shear stress, and blood pressure
all play a role in the response of the cardiovascular system
to acute changes in end-organ demand. Quantifying these
variables under a range of physiologic conditions is one
of the important applications of computational methods
applied to model blood flow.

The cardiovascular system also adapts to long-term
anatomic and physiologic changes of the organism as occurs
during growth, aging, injury, increased or decreased physical
activity levels, and the onset of disease. Again, hemody-
namic conditions play important roles in vascular adaptation
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in health and disease. Changes in blood velocity and
pressure fields, sensed at a cellular level, initiate a cascade
of biochemical signals leading to hierarchical reorganiza-
tion across molecular, cellular, tissue, and system scales
(Humphrey, 2008). For example, blood vessels enlarge in
response to chronic increases in blood flow through a mech-
anism thought to be modulated by increased shear stress
acting on the endothelial cells (Kamiya and Togawa, 1980;
Zarins et al., 1987). In contrast to vascular enlargement in
response to increased flow, blood vessels reduce in caliber
in response to reductions in blood flow (Galt et al., 1993).
In addition to shear-modulated changes in the diameter of
blood vessels due to changes in blood flow, the walls of
blood vessels get thinner as a result of decreased pressure
and thicken in response to increased pressure through a
mechanism hypothesized to be modulated by changes in
tensile stress (Liu and Fung, 1989). These adaptive processes
are part of a growing body of research on vascular growth
and remodeling (G&R), which will be described in the
following sections (Figueroa et al., 2009; Sankaran et al.,
2013; Valentín and Humphrey, 2009).

Computational methods have been widely applied to the
quantification of hemodynamic and biomechanical factors
in relation to the genesis, progression, and clinical conse-
quences of congenital and acquired cardiovascular disease.
Congenital cardiovascular diseases arise from structural
abnormalities of the heart and blood vessels including septal
defects (holes between the atria or ventricles), obstructions
of the valves of the heart or major arteries leaving the heart,
transposition of the major arteries exiting the heart, and inad-
equate development of the right or left ventricles. In some
cases, multiple defects are present or one defect can precip-
itate another, as occurs when obstruction of the tricuspid
valve (between the right atrium and ventricle) interferes
with the normal development of the right ventricle. As in the
case of the normal adaptation of blood vessels in response
to changes in shear or tensile stress, hemodynamic factors
play an important role in the development and progression
of congenital cardiovascular disease. Further, since recon-
structive surgeries or catheter-based interventions used to
repair congenital malformations alter the hemodynamic
conditions, methods to model blood flow, coupled to cardio-
vascular physiology, have increasing application in clinical
decision-making in pediatric cardiology and surgery (Yang
et al., 2011; Baretta et al., 2011; Hsia et al., 2011; Ensley
et al., 2000b).

Acquired cardiovascular disease became the leading cause
of death in the industrialized world in the early twen-
tieth century and contributes to roughly a third of global
deaths. The most predominant form of acquired cardio-
vascular disease, atherosclerosis, results from the chronic
buildup of fatty material in the inner layer of the arteries

supplying the heart, brain, kidneys, digestive system, and
lower extremities. Interestingly, the upper extremity vessels
are typically spared of atherosclerosis. Risk factors for
atherosclerosis including smoking, high cholesterol diet,
physical inactivity, and obesity affect all the arteries of the
body, but notably, the disease is localized at branches and
bends of the arterial tree. The observation that atheroscle-
rosis occurs only in localized regions of the body has led
to the hypothesis that hemodynamic factors play a critical
role in its development (Zarins et al., 1983; Caro et al., 1971;
Friedman et al., 1981). This has motivated the application of
experimental and computational methods to quantify hemo-
dynamics and vessel wall biomechanics in human arteries.
This will be discussed further in the remainder of this chapter.

In contrast to occlusive diseases such as atherosclerosis
that results in vessel narrowing, aneurysmal disease results
in vessel enlargement and in some cases rupture. As in the
case of atherosclerosis, despite risk factors that are diffuse
throughout the body, aneurysmal disease is highly local-
ized and occurs predominantly in the aorta, and the iliac,
popliteal, carotid, and cerebral arteries, and can occur in the
coronary arteries as a result of Kawasaki disease. The local-
ization of aneurysmal disease is hypothesized to be influ-
enced by hemodynamic conditions including flow stagnation
and pressure wave amplification. For example, one of the
most common sites of aneurysmal disease, the infrarenal
abdominal aorta, is a location where blood flow is particu-
larly complex and recirculating as a result of the multiple
branches that deliver blood to the organs in the abdomen
(Ku, 1994; Xu et al., 1994; Taylor et al., 1998a, 1999, 2002).
The resulting flow stagnation in the infrarenal abdominal
aorta may enhance inflammatory processes hypothesized to
contribute to the degradation of the vessel wall. In addition,
because of the reduction of cross-sectional area and progres-
sive stiffening of the aorta from the heart to the pelvis, as
well as pressure reflections from downstream vessels, the
pressure pulse increases in magnitude and contributes to a
greater load on the wall of the abdominal aorta. Once again,
the quantification of blood flow velocity and pressure fields
may contribute to investigations into the pathogenesis of
aneurysmal disease.

Finally, in clinical medicine, the quantification of blood
flow velocity and pressure fields is becoming increasingly
important in the diagnosis, treatment planning, and subse-
quent management of patients with congenital and acquired
cardiovascular diseases. Risk stratification may be enabled
using computational modeling to augment clinical imaging
studies, providing hemodynamic data that may be otherwise
unattainable. One such technology, FFRCT , which is already
gaining traction in the clinic for the evaluation of functional
significance of coronary lesions, was recently approved
for clinical use by the US Food and Drug Administration
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(FDA). Medical, interventional, and surgical therapies used
to increase or restore blood flow to compromised organs and
tissues or isolate aneurysmal regions from pressure forces
may benefit from quantitative data provided by computa-
tional methods.

This chapter is focused on computational methods for
quantifying blood flow velocity and pressure fields in human
arteries and is organized as follows. Section 2 provides a
concise overview of important concepts from cardiovascular
anatomy and physiology. Section 3 summarizes several
well-established methods in blood flow modeling, including
the paradigm of image-based modeling, zero-dimensional
(0D) (i.e., lumped parameter) models, one-dimensional
(1D) theory, three-dimensional methods, and fluid–structure
interaction (FSI) formulations. Section 4 explores novel
computational tools for blood flow modeling, including
formulations for tissue G&R, methods for parameter estima-
tion and uncertainty quantification (UQ), and optimization.
Section 5 focuses on several important clinical applications,
namely, pediatric cardiology, coronary artery disease, and
simulation of transitional hemodynamic stages. Finally,
Section 6 describes some of the important areas of future
development and challenges anticipated for computational
modeling of cardiovascular blood flow.

2 OVERVIEW OF THE
CARDIOVASCULAR SYSTEM

The circulatory system is the primary means of transport
for oxygen, nutrients, and hormones in organisms. The key
elements of all closed circulatory systems are a circulating
fluid (blood), a pumping mechanism (heart), a distribution
system (arteries), an exchange system (capillaries), and a
collection system (veins). Note that some animals, notably
insects, and many mollusks, eject a blood-like fluid directly
into their body cavities. This open circulatory system, oper-
ating under low pressures and small velocities, is a relatively
inefficient transport system that poses great difficulties for
the organism in achieving a differential distribution of blood
flow to various organs and tissues (Kay, 1998). Here, we
focus our attention on mammalian circulatory systems. The
interested reader is referred to the following books (Kay,
1998; Kardong, 2002) for further discussion of circulatory
systems in other animals.

Blood is a suspension of cells in plasma. The concentration
of cells, termed the hematocrit, is approximately 50% by
volume but may vary in diseased states. We can distinguish
three major types of cells on the basis of their function in
the circulation: erythrocytes, leukocytes, and thrombocytes.
Erythrocytes or red blood cells are the most abundant cells
in the blood stream (and the body) and are the primary

transport vessels for oxygen and carbon dioxide. It is esti-
mated that of the approximately 100 trillion cells in the body,
fully one-fourth are erythrocytes. Mammalian erythrocytes
are disk shaped (due to the absence of a nucleus) with a
diameter of approximately 8μm and a thickness of 2μm.
Leukocytes or white blood cells represent less than 1% of
blood cells but have a critical role in producing antibodies
and identifying and disposing of foreign substances. Mono-
cytes and lymphocytes are two particular types of leukocytes
that have been implicated in the early stages of atheroscle-
rosis and support the current view of atherosclerosis as
a chronic inflammatory disease (Ross, 1999). The third
major category of blood cells, thrombocytes or platelets,
represents approximately 5% of blood cells. Thrombocytes
interact with the protein fibrinogen to form fibrin, a mesh
that traps cells to aid in the healing process. Finally, the
plasma consists of approximately 90% water, 8% plasma
proteins, 1% inorganic substances, and 1% emulsified fat.
Blood plasma comprises approximately 20% of the entire
extracellular fluid of the body.

Of central importance in the cardiovascular system, the
heart propels blood through the systemic and pulmonary
arteries and receives it from the systemic and pulmonary
veins. In the normal heart, during the diastolic phase of
the cardiac cycle, blood entering the atria flows into the
ventricles as the ventricles relax and pressures fall below
atrial pressures. Blood flowing from the right atria passes
through the tricuspid valve into the right ventricle, while
blood travels from the left atria to the left ventricle through
the mitral valve. During the systolic phase of the cardiac
cycle, the rising pressure in the contracting left ventricle
exceeds aortic pressure and blood is ejected from the left
ventricle through the aortic valve into the ascending aorta.
Simultaneously, once the rising right ventricular pressure
exceeds the main pulmonary artery pressure, blood flows
through the pulmonary valve into the pulmonary arteries.
Blood fills the right atria from the superior and inferior
vena cava and the left atria from the pulmonary veins as
the blood exiting the atria during diastole reduces atrial
pressure relative to the venous filling pressure. The cardiac
cycle, once complete, repeats itself again, as it will another
35 million times each year for the average adult. A useful
description of the relationship between ventricular pressure
and flow during the cardiac cycle, the pressure-volume loop,
is shown in Figure 1. Clearly, changes in left ventricular
volume during ejection directly correspond to the aortic
flow. The area inside the left ventricular pressure–volume
loop corresponds to the work performed by the ventricle on
the blood. As discussed in the following section, lumped
parameter models of the heart are often developed with the
aim of replicating the pressure–volume loop under a range of
physiologic states.
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Figure 1. Left ventricular pressure–volume loop. The systolic
phase of the cardiac cycle starts with isovolumic contraction (A–B)
followed by ejection (B–C). Diastole begins ith isovolumic relax-
ation (C–D) followed by diastolic filling (D–A).

The final three key elements of all closed circulatory
systems are the distribution system (arteries), exchange
system (capillaries), and collection system (veins). For
the purposes of this chapter, we focus our attention on
the arterial system, but note that consideration of blood
flow in the capillary bed necessitates consideration of the
cellular nature of blood, and models of venous blood flow
need to incorporate the physics of flow in collapsible tubes
subject to low venous pressures. Turning our attention to the
arterial system, we note that, in fact, there are two arterial
systems in the body, the systemic and pulmonary arteries.
For normal children and adults, these systems are in series,
and the volumetric flow through each system is the same.
However, because of a higher vascular resistance, blood
pressures are approximately six times higher in the systemic
circulation compared to the pulmonary circulation. Both
arterial systems are often described using fractal geometry,
and while there is some debate as to whether different parts
of the vascular system are truly fractal in nature, at the
very least, the arterial (and venous) systems are space filling,
branching continuously to ever smaller vessels until the level
of the capillaries is reached. Descending the vascular tree,
the cross-sectional area increases, resulting in a decrease
in the resistance of the vascular bed as compared to an
area-preserving branching network. Alternate approaches
have been used to describe the branching patterns of arteries,
ranging from symmetric and asymmetric binary fractal trees
(Olufsen, 1999) to diameter-defined Strahler systems that

accommodate branching systems with small side branches
coming off a larger trunk as frequently seen in the arterial
system (Kassab and Fung, 1995; Choy and Kassab, 2008;
Spilker et al., 2007). Regardless of the method for describing
the vascular anatomy, the direct representation of all the
vessels from the major arteries to precapillary arterioles in
a computational model is a daunting, and often intractable,
task resulting in tens to hundreds of millions of vessels.
We first consider methods that lump all these vessels into a
small number of components and then describe methods to
incorporate anatomically representative models of the entire
vascular system.

3 ESTABLISHED METHODS IN BLOOD
FLOW MODELING

3.1 Image-based modeling

Analysis and simulation of blood flow necessitates a combi-
nation of image analysis and model construction, boundary
condition (BC) and material property selection, accurate
solution of the governing equations, physiology models,
and high-performance computing. Patient-specific cardio-
vascular simulations typically begin with 3D reconstruction
of a portion of the vascular anatomy from CT or MRI image
data and progress through stages of meshing, BC and param-
eter assignment, hemodynamic simulation, and flow anal-
ysis (Wilson et al., 2001; Updegrove et al., 2016; Taylor
et al., 1998b). This produces a wealth of data from which
we aim to extract clinically relevant information to improve
patient care. Since only a portion of a patient’s anatomy
can be included in the 3D model, both due to computa-
tional expense and limits of image resolution, BCs must
be applied at inlets and outlets of the model to accurately
represent the vascular network outside of the 3D domain,
enabling physiologic representation of flow and pressure
waveforms.

Patient-specific modeling requires construction of
three-dimensional models of vascular anatomy derived
directly from patient image data. The imaging modality is
typically CT or MRI data, though ultrasound and angiog-
raphy data can provide an attractive alternative. Image data is
typically segmented using 2D or 3D level set or thresholding
methods. Available packages for model construction are the
open source packages SimVascular (www.simvascular.org),
CRIMSON (www.crimson.software), and ITK-SNAP or
commercial packages such as Mimics (Materialise, Leuven,
Belgium) (Updegrove et al., 2016). The model construction
process typically employs a four-step process: (i) creation
of centerline vessel paths, (ii) 2D segmentation of the
lumen of each vessel, (iii) lofting segmentations to create
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Figure 2. The typical steps in the patient-specific modeling process include (from left to right): importing medical image data, construction
of centerline paths and segmentations, three-dimensional model construction, unstructured mesh generation, assignment of physiologic
boundary conditions, and finite-element flow simulation to extract quantities of clinical interest. (Reproduced with permission from Les
et al., 2010. © Biomedical Engineering Society, 2010.)

a 3D model with multiple branches, and (iv) unstructured
mesh generation. The steps of the typical patient-specific
modeling process are shown in Figure 2. Image segmentation
methods are a challenging component of the cardiovascular
modeling process, often requiring extensive user interven-
tion and manual segmentation to supplement automated
methods. Recent efforts to improve automated segmentation
algorithms have focused on machine learning algorithms
and shape analysis and have also been extended to 3D
segmentation methods using region growing and active
contours (Merkow et al., 2015). Continued advancements
in these areas will be crucial to enable high-throughput
processing of models for large patient cohorts in clinical
studies.

3.2 Zero-dimensional methods

Perhaps the simplest model one can use to model blood
flow in the cardiovascular system is a 0D lumped param-
eter method, which utilizes an analogy between fluid flow
in the heart and vascular system and current flow in electric
circuits to obtain systems of ordinary differential equations
(ODEs) governing pressure and flow rate over time. In
this method, pressure and flow rate replace voltage and
current, resistors and inductors are used to represent the
viscous and inertial properties of blood, and capacitors
to represent elastic wall behavior (Westerhof et al., 1969,
2009).

Using this analogy, some basic building blocks of a 0D
lumped parameter network (LPN) can be defined as follows.
Making the analogy of flow rate to current, and pressure drop
to voltage, the relations for a resistor (R), capacitor (C), and
inductor (L), with appropriate analogies to fluid dynamics,
where ΔP is pressure drop and Q is flow rate, are as follows:

V = IR ⇒ ΔP = QR (1)

V = d
dt

LI ⇒ ΔP = d
dt

LQ (2)

I = d
dt

CV ⇒ Q = d
dt

CP (3)

Making a rigid wall, Poiseuille flow assumption, the resis-
tance of a section of blood vessel is

R = 8𝜇l

𝜋a4
(4)

where a is the vessel radius, 𝜇 viscosity, and l the vessel
length, so that resistance is inversely propotional to the
fourth power of the radius. These circuit building blocks can
then be used to assemble networks of vessels and organs.
At element junctions, conservation of mass is enforced
following Kirchoff ’s law and continuity of pressure is
assumed.

One of the most interesting applications of the lumped
parameter method is in constructing a model of the heart that
can reproduce pressure–volume data and cardiac function. In
this approach, the contraction of the heart is modeled using
time-varying capacitors and unidirectional flow through
heart valves is modeled using diodes. The maximum pres-
sure developed in the ventricles is directly related to the
“afterload” posed by the vascular system. Here, simple
lumped parameter models, such as the RCR circuit (where
a relatively small upstream resistor is connected in series
to a parallel arrangement of a capacitor and downstream
resistor), have been used to model the effect of arterial
compliance and a high resistance distal vascular bed on
pressure and flow waveforms. This approach is particularly
useful in developing in vitro mock circulatory systems for
experimental flow studies (Kim et al., 2009; Vukicevic et al.,
2013).
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Figure 3. A patient-specific model of the Fontan surgery with a Y-graft configuration illustrating the use of open-loop (a) and closed-loop
(b) boundary condition configurations for multiscale modeling.

In addition to cardiac models, lumped parameter models
provide a surprisingly accurate representation of the
closed-loop circulatory physiology. Lumped parameter
models have been used to provide BCs for other analysis
methods and are an essential component in efforts to develop
“closed-loop” circulatory models (Esmaily-Moghadam
et al., 2013b; Lagana et al., 2002; Sankaran et al., 2012;
Corsini et al., 2011). The RCR (Windkessel) circuit is
commonly adopted as an outlet BC to model the distal
vasculature with one capacitor modeling vessel compliance
and two resistors modeling proximal and distal pressure
drops. Diodes and other specialized components may also
be included to model heart valves and elastance of heart
chambers. As some circuit components are time dependent,
for example, due to the presence of inductors and capacitors,
the circuit is represented by a set of time-dependent ODEs.
Combining these equations produces a single ODE with
order equal to the number of time-dependent components
in the circuit. For simple circuits with low-order ODE,
an analytical solution can be obtained, as is the case with

simple resistors, RCR (Windkessel) circuits, and coronary
artery models, which are commonly used as outlet BCs
in an open-loop configuration. Models can be expanded
to a full closed-loop networks that can then be coupled to
the 3D domain. A closed-loop lumped-parameter model
has the advantage that the effects from the global circu-
lation are fully coupled to influence the overall simulated
physiology. Figure 3 shows an example of closed-loop
and open-loop multiscale simulation setups. Two limi-
tations of lumped parameter models are worth noting.
First, since geometry is not explicitly defined, wave prop-
agation effects are not incorporated in lumped parameter
models. Second, the determination of model parameters
is generally based on the behavior of the entire system or
subsystem, not on first principles as in the case of methods
that emanate from initial-boundary-value problems. As a
result, changes to components of the system, for example,
a single artery, or an entire vascular bed, are not easily
modeled.
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3.3 One-dimensional methods

Nonlinear and linear 1D methods can accurately describe
pulse wave propagation phenomena in extensive vascular
networks while keeping the computational cost down. 1D
methods are based on the assumptions that the dominant
component of blood flow velocity is oriented along the vessel
axis and that pressure can be assumed constant over the
cross section of the vessel. For the flow of a Newtonian
fluid in a deforming, impermeable, elastic domain, these
equations consist of the following: (i) a continuity equation,
(ii) a single axial momentum balance equation, and (iii) a
constitutive equation (also known as tube law), together with
suitable initial and BCs. Originally developed by Hughes
and Lubliner (1973), the most commonly used form of the
nonlinear continuity and momentum balance 1D equations
of blood flow is as follows (Sherwin et al., 2003; Peiró et al.,
2009): ⎧⎪⎨⎪⎩

𝜕A
𝜕t

+ 𝜕(AU)
𝜕x

= 0

𝜕U
𝜕t

+ U
𝜕U
𝜕x

+ 1
𝜌f

𝜕P
𝜕x

=
f

𝜌fA

(5)

where x is the axial coordinate along the vessel, t the time,
A(x, t) the cross-sectional area of the lumen, U(x, t) the axial
blood flow velocity averaged over the cross section, P(x, t)
the blood pressure averaged over the cross section, 𝜌f the
density of blood assumed to be constant, and f (x, t) the
frictional force per unit length. These equations assume a
value of one for the momentum correction factor in the
convection acceleration term of equation (5), following the
work of Stergiopulos et al. (1992).

Often, the velocity profile is assumed to be constant in
shape and axisymmetric. The axial velocity (u) can be
described by a polynomial:

u(x, 𝜉, t) = U(x, t)𝜁 + 2
𝜁

[
1 −

(
𝜉

r

)𝜁
]

(6)

where r(x, t) is the lumen radius, 𝜉 the radial coordinate,
and 𝜁 the polynomial order. 𝜁 = 9 has been shown to
provide a good compromise fit to time-resolved experimental
data (Smith et al., 2002). If we consider an axisymmetric
vessel, the frictional force per unit length yields f (x, t) =
2𝜇𝜋r 𝜕u

𝜕𝜉
|𝜉=r. For the velocity profile given by equation (6), we

have f = −2(𝜁 + 2)𝜇𝜋U in which the local f is proportional
to the local flow. Note that 𝜁 = 2 leads to the Poiseuille flow
resistance f = −8𝜇𝜋U. An explicit algebraic relationship
between P and A (or tube law) is also required to close eqau-
tion (5) and account for the FSI of the problem. In general, we
have P = (A(x, t); x, t), where the function  depends on
the model used to describe the dynamics of the arterial wall.

In the 1D model, each cross section is assumed to deform
axisymmetrically and independently from the others. A rela-
tionship between circumferential hoop stress, T𝜃 , and radial
displacement can then be invoked: displacement can then be
invoked:

T𝜃 =
E

1 − 𝜈2

r − rd

rd
(7)

where rd is the radius at diastolic pressure (Pd). Applying
Laplace’s law, T𝜃 = (P − Pd)r∕h, and assuming that 1∕r can
be approximated by 1∕rd, we obtain the following constitu-
tive equation (Alastruey et al., 2011):

P = Pd +
4
3

Eh
r − rd

(rd)2
= Pd +

𝛽

Ad
(
√

A −
√

Ad),

𝛽 = 4
3

√
𝜋Eh (8)

where Ad(x) is the luminal area at diastolic pressure. In
equation (8), both E and h are functions of the position x.
The pulse wave speed c(x, t) is related to A through

c =

√
𝛽

2𝜌fAd
A1∕4 (9)

The initial area A0 is calculated by replacing P = 0 and A =
A0 in equation (8), which leads to

A0 = Ad

(
1 −

√
Ad

Pd

𝛽

)2

(10)

When solving 1D simulations in a network of vessels, one
must involve matching conditions at bifurcations by taking
into account the correct propagation of the characteristic
information and neglecting energy losses (Alastruey et al.,
2008). Nonlinear 1D formulations naturally account for
nonlinear advective losses in the flow and are able to appro-
priately describe pulse wave propagation in the cardiovas-
cular system. These formulations are particularly well suited
for modeling blood flow in the larger arteries. In addition to
accounting for pulse wave propagation, they also enable a
simple framework to utilize viscoelastic constitutive models
(Valdez-Jasso et al., 2011; Raghu et al., 2011), a trait of
recognized importance in the behavior of the arterial system
(Holenstein et al., 1980).

The 1D theory, due to its low computational cost, has been
applied to model hemodynamics in large arterial networks
(Reymond et al., 2009; Blanco et al., 2015) and, in particular,
to understand pulse wave propagation in human and animal
circulations (Matthys et al., 2007; Alastruey et al., 2011).
Recently, formulations have been derived that enable a more
accurate characterization of quantities such as wall shear
stress (WSS), by releasing the common assumption in 1D
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methods in which velocity and flow waveforms are in phase
(Bessems et al., 2007). Furthermore, studies have confirmed
that 1D simulations produce flows and pressure waveforms
that compare well with those obtained with 3D formulations,
in both idealized (Xiao et al., 2014) and even subject-specific
geometries (Alastruey et al., 2016).

However, 1D methods are not well suited to study situ-
ations in which the flow is complex due to curvature,
branching, and stenoses. Here, the axisymmetric assump-
tion, fundamental to any 1D models, simply breaks down.
There have been attempts to address this limitation by
developing empirically derived losses to model the effects
of stenoses (Seeley and Young, 1976; Young and Tsai,
1973; Stergiopulos et al., 1992; Olufsen, 1999). However,
these approaches introduce ad hoc parameters that must be
calibrated for each specific problem. Therefore, in situations
in which the flow is complex, as is commonly the case
in disease conditions (e.g., stenosis, aneurysms, fistulas,
and shunts), or in situations in which a medical device is
deployed in the system, 3D methods must be utilized in
order to describe such flows.

3.4 Three-dimensional methods

Although the suspension fluid, plasma, is largely composed
of water, the large concentration of cells results in a
non-Newtonian rheological behavior for whole blood.
Specifically, blood exhibits a shear-thinning behavior where
the viscosity at any shear rate increases with an increased
percentage of cells (Fung, 1984). Despite this, it is gener-
ally accepted that blood flow in the large vessels can be
represented as an incompressible fluid whose constitu-
tive behavior is usually approximated by a Newtonian
model. Arterial blood flow has been traditionally repre-
sented using the Incompressible Navier–Stokes equations
in a fixed Eulerian frame of reference. However, blood
velocity and pressure fields can be greatly influenced by
the motion of external or internal vascular structures, such
as the contracting cardiac muscle, moving heart valves,
or deforming large arteries. In these situations, one must
characterize the mechanical behavior of the moving vascular
structure and its interactions with the blood flow. Depending
on whether the deformability of the vascular structures is
considered or not, one must choose between adopting a rigid
wall and an FSI formulation. Rigid wall analyses are signif-
icantly less computationally expensive and provide useful
information when the goal is to characterize transport, WSS
and derivative quantities, and overall flow and pressure. In
contrast, when studying processes in which the interaction
between blood and vascular structure is important, such
as hypertension, aneurysms, or a variety of device–vessel
interactions, FSI formulations must be utilized.

3.4.1 Rigid wall formulations

The governing equations for the three-dimensional theory
of blood flow under the assumptions of an incompress-
ible, homogeneous, Newtonian fluid flow in a fixed Eulerian
frame consist of the Navier–Stokes equations and suitable
initial and BCs:

𝜌(v̇ + v ⋅ ∇ v) = −∇ p + ∇ ⋅ 𝝉 f + b in Ωf

∇ ⋅ v = 0 in Ωf

v(x, t = 0) = v0 in Ωf

v = g on Γg

(−pI + 𝝉 f) ⋅ n = h on Γh

(11)

where Ωf denotes the domain where the flow takes place, v
the fluid velocity, p the pressure, b a body force, n a boundary
unit normal, 𝜌 the density, and 𝝉 f = 𝜇(∇ v + (∇ v)T) the
viscous stress tensor for a Newtonian fluid. Γg and Γh
are the Dirichlet and Neumann portions of the boundary,
respectively.

These equations are solved numerically using either finite
elements or finite volume methods. In the past two decades,
the number of contributions to the field in which the 3D
Navier–Stokes were solved to simulate hemodynamic prob-
lems can be counted by the thousands, in areas ranging from
disease research, to medical device design and performance
evaluation, to noninvasive diagnostics, and even virtual
surgical planning. Commercial packages have made these
formulations readily accessible to a wide range of users.
However, these packages often limit the user in terms of both
proper mesh refinement strategies and, most importantly,
the ability to include sophisticated inflow and outflow BCs
that can meaningfully represent the hemodynamics of the
system at hand (Section 3.5).

Perktold in the late 1980s and early 1990s was a pioneer
in the use of computational methods to solve the 3D
Navier–Stokes equations to represent blood flow in human
arteries (Perktold and Hilbert, 1986; Perktold et al., 1987,
1991a,b; Perktold and Peter, 1990). Taylor, Hughes and
Zarins then pioneered the paradigm of “image-based”
modeling, in which geometrical models of the vessels
of interest are extracted from medical image data and
computational methods used to solve the incompressible
Navier–Stokes equations (Taylor et al., 1996, 1998b).

The methods have been used successfully to study hemo-
dynamics in abdominal aortic aneurysms (Les et al., 2010;
Tang et al., 2006), the pulmonary arteries (Tang et al., 2011),
cerebral aneurysms (Cebral et al., 2005a,b; Sforza et al.,
2009), the Fontan circulation (Marsden et al., 2007, 2009),
aortic coarctation (LaDisa et al., 2011a,b; Coogan et al.,
2013), and aortic dissection (Dillon-Murphy et al., 2016).
Lagrangian analysis has been used to characterize coherent
structures within cardiovascular flows (Shadden and Taylor,
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Figure 4. Comparison of CFD data and acquired 4D PC-MRI flow data at peak systole and mid-diastole in a patient with Type B aortic
dissection. In aortic dissection, the aorta is divided into two different passages, a true lumen and a false lumen. Multiple communication
tears may connect the two passages, creating a complex hemodynamic environment. (a) The computed tomography image data at two
locations shows suspected connecting tears between the true and false lumina (Dillon-Murphy et al., 2016). panels b and c compare CFD
and 4D PC-MRI velocity patterns at peak systole and mid diastole, respectively. (Dillon-Murphy, https://link.springer.com/article/10.1007/
s10237-015-0729-2. Used under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/.)

2008). In summary, the development of advanced imaging
modalities, with higher spatial and temporal resolution, and
even time-resolved volumetric velocity information (e.g., 4D
PC-MRI Markl et al., 2007), make for a closer integration
between medical data and computation of hemodynamics
(Figure 4).

Recently, the field has witnessed the first commercial appli-
cation of 3D computational methods for blood flow. Heart-
flow, Inc. received FDA approval in 2014 for a workflow in
which the severity of coronary artery disease can be assessed
using computed tomography data to reconstruct the main
vessels of the coronary tree of a patient, and computer simu-
lations of blood and pressure (Taylor et al., 2013) to estimate
the so-called FFRCT (fractional flow reserve), a normalized
metric of pressure gradients through a stenotic vessel under
conditions of maximum flow.

It is apparent that 3D methods for blood flow in rigid
domains constructed from image data are in a very advanced
stage of maturity. Provided that appropriate inflow and
outflow BCs are specified via multiscale or multiresolu-
tion methods (Section 3.5) and that proper care is given to
achieving mesh-independent solutions, these formulations
have been widely effective in situations in which the goal is to
characterize quantities such as pressure, pressure gradients,
flow distributions, WSS and its derivatives, and transport.

3.4.2 Fluid–structure interaction formulations

Blood velocity and pressure fields can be greatly influenced
by the motion of external or internal vascular structures, such
as the contracting cardiac muscle, moving heart valves, or
deforming large arteries of the body. In these situations, one
must characterize the mechanical behavior of the moving
vascular structure (usually in a Lagrangian frame of refer-
ence) and its interactions with the blood flow, defining an
FSI problem. We next provide an overview of the different
families of FSI methods that have been used to model cardio-
vascular FSI problems.

Arbitrary Lagrangian–Eulerian formulations. In the arbi-
trary Lagrangian–Eulerian (ALE) formulation (Hughes
et al., 1981; Le Tallec and Mouro, 2001), the Navier–Stokes
equations are written in a moving reference frame that
follows the motion set by the vascular structure (Figure 5).
At this interface, kinematic (continuity of velocities) and
dynamic (equilibrium of tractions) compatibility condi-
tions must be satisfied between fluid and structure. In ALE
formulations, the motion of computational grid in which
the flow problem is described is arbitrary and defined by
a grid velocity vG = ( 𝜕x

𝜕t
)
𝝌

. This velocity is defined by the
Lagrangian motion of the vascular structure at the fluid–solid
interface Γs

x, but it needs to be propagated to all grid points
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Figure 5. Different configurations used in the ALE formulation.

in the interior of the flow domain. In an ALE formulation,
one must therefore solve the following three-field problem
(Figure 5):

1. The Navier–Stokes equations of motion of a fluid in
a moving spatial domain Ωx, to represent the blood
motion,

𝜌

(
𝜕v
𝜕t 𝝌

+ (v − vG) ⋅ ∇ xv
)

= −∇ xp

+ ∇ x ⋅ 𝝉 f + b in Ωx
∇ x ⋅ v = 0 in Ωx

(12)
2. The elastodynamics equations of motion of the vascular

structure written in a Lagrangian frame of reference with
respect to some initial configuration,

𝜌s
0

(
𝜕v
𝜕t X

+ ∇ X(FS)
)
= b0 in Ωs

X (13)

3. The motion of the computational grid for the blood flow
domain, defined by an arbitrary mapping x = 𝜙(𝝌 , t) that
matches the motion of the structure at the interface Γs

x.

The ALE formulation is a boundary-fitting technique,
in which the fluid–solid interface is accurately captured
due to continuous updating of the fluid grid. However, in
problems with large deformations in the vascular structure,
ALE formulations may be time consuming. Modular (e.g.,
staggered) and nonmodular (e.g., monolithic) approaches
for the solution of the coupled algebraic system resulting
from the space–time discretization of the FSI problem
have been proposed. Modular preconditioners allow for the
use of independent, specialized fluid and structure solvers
coupled via a relatively simple iterative scheme. These

algorithms may exhibit poor convergence in cardiovas-
cular problems, in which the density of the fluid 𝜌 and
the structure 𝜌s are comparable. Nonmodular precondi-
tioners require a more elaborated coupling between the
fluid and solid solvers but result in faster, more stable
algorithms.

ALE formulations were first used in cardiovascular appli-
cations by Perktold and Rappitsch (1995) and Prosi et al.
(2004). More recently, Gerbeau et al. (2005), Gerbeau and
Vidrascu (2003) studied hemodynamics in FSI models of
cerebral aneurysms and carotid bifurcations, Bazilevs et al.
(2006), Zhang et al. (2007) performed patient-specific FSI
simulations using an isogeometric framework, and Wolters
et al. (2005) and Scotti et al. (2005) investigated FSI in
patient-specific abdominal aortic aneurysm models.

Immersed Boundary Method formulations. The immersed
boundary method (IBM) was first introduced by Peskin
(1972, 2003) in the context of finite differences. The IBM
is a non-boundary-fitting formulation in which the structure
was represented by a set of nonconforming, interconnected
elastic boundary points embedded in the fluid domain, which
is kept fixed throughout the computations. IBM formu-
lations have been used in cardiovascular applications by
Lemmon and Yoganathan (2000) to examine left ventric-
ular dysfunction; Watton et al. (2007) to study prosthetic
mitral valves; Griffith et al. (2009) to investigate natural and
prosthetic heart valves; and Vigmond et al. (2008) to develop
a whole heart electro-mechano-fluidic computational frame-
work. On the microscales, the IBM has also been applied to
modeling the interactions of red blood cells and plasma in
the meso-circulation (Bagchi, 2007).

Closely related to the IBM, the fictitious domain method,
first developed by Glowinski et al. (1997) in the context of
finite elements, introduced Lagrange multipliers to constrain
the motion of the fluid and the solid at the interface. Baai-
jens (2001) subsequently developed an extension suitable for
slender structures and performed cardiovascular FSI simula-
tions of the aortic valve (De Hart et al., 2003, 2004). van de
Vosse et al. (2003) and van Loon et al. (2003). also utilized a
combination of ALE and fictitious domain methods to simu-
late dynamics of heart valves.

Coupled Momentum Method. Figueroa et al. (2006) devel-
oped a “coupled-momentum method” in which the elasto-
dynamics equations are coupled with the fluid through a
fictitious body force that drives the motion of the vessel wall,
which is modeled as a thin-walled membrane. This mono-
lithic method, coupled with multidomain formulations for
inflow and outflow BCs (Vignon-Clementel et al., 2006),
enables FSI simulations with small increase in computational
cost compared to rigid wall models (LaDisa et al., 2011a,b;
Coogan et al., 2013). It is particularly well suited to study
pulse wave propagation in complex 3D vascular models built
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from both human (Xiao et al., 2013) and animal image data
(Cuomo et al., 2015). Figure 6 shows 3D hemodynamics
in a full-body vascular model consisting of the 84 largest
arteries in the human. The model has spatially varying tissue
properties that include higher compliance in the ascending
aorta and smaller compliance in distal aorta and peripheral
vessels. The model reproduces accurately regionally flow
distributions, pressure and flow waveforms, and pulse wave
velocity.

3.5 Multi-scale modeling

Because an image-based model is restricted to a certain
region of the vascular anatomy and limited by image reso-
lution to large and mid-sized vessels, it is crucial to employ
multiscale modeling methods that capture organ-level
responses of the circulation as well as resistance, impedance,
and wave propagation effects of the distal vascular and capil-
lary beds. In the following paragraphs, we describe recent
developments toward modeling methods that capture these
effects, primarily through the use of closed-loop lumped
parameter networks and heart models.

The choice of BCs is of paramount importance in cardio-
vascular simulations, as the local flow dynamics are greatly
influenced by conditions upstream and downstream of the
3D model. Numerous studies have demonstrated drastic
differences in flow solutions with different BC choices,
even with simple geometries, and particularly in models
with multiple outlets (Vignon-Clementel et al., 2006,
2010). Commonly used outlet BCs such as zero pressure or
zero traction, while easiest to implement, are well known
to lead to unrealistic solutions, in part because of their
inability to capture physiologic levels of pressure. These
methods should not be used for FSI problems where the
wall deformation depends directly on the pressure level
in the vessel. Vascular resistance in arterioles and capil-
laries is largely responsible for determining blood pressure
levels in large arteries. The same vascular resistances are
also responsible for regulating the distribution of blood
flow to different regions of the body. A fluid dynamic
simulation of large arteries, without consideration of the
smaller downstream vessels, neglects these important
effects.

A typical choice of inlet BC is to impose a prescribed pres-
sure or flow waveform. Typical choices for outlets are zero
pressure or zero traction conditions, resistance or impedance
conditions, reduced order models which can be open or
closed loop, or reduced order 1D wave propagation equations
(Vignon-Clementel et al., 2006, 2010; Formaggia et al.,
2003). A closed-loop approach can also be taken, in which
all boundaries of the 3D model are coupled to a lumped

parameter network. These BCs are imposed via a Dirichlet
condition

u = g, x ∈ Γg (14)

or a Neumann condition

T ⋅ n = h, x ∈ Γh (15)

in which Γg and Γh denote Dirichlet and Neumann bound-
aries, respectively.

Note that g and h are a prescribed function of x and t for
uncoupled BCs (e.g., zero traction), whereas they are also a
function of u and p for complex reduced order models (e.g.,
closed-loop heart models).

Here, we discuss BCs coming from closed-loop lumped
parameter networks. To capture the interaction between
the local 3D domain and the global circulation, the 3D
Navier–Stokes solver must be coupled to a reduced order
LPN model. In a closed-loop configuration, the 3D domain
inflow is extracted from the 0D domain solution, incor-
porating the responses of the heart and global physiology
to altered flow conditions at the 3D–0D interface. In
a closed-loop scenario, the 3D domain presents itself
to the 0D model as a set of time-varying resistance,
inductance, and capacitance (in the case of deformable
wall simulation), which are functions of the 3D domain
hemodynamics. The 0D model behavior is affected by
this 3D model behavior and thus provides BCs that are
fully coupled to the 3D domain, forming a complete
feedback loop.

Closed-loop multiscale models have been particularly
useful in modeling coronary flows, as well as complex
surgeries in pediatric cardiology applications (Migliavacca
et al., 2003; Kung et al., 2013; Sankaran et al., 2012).
For example, the effects of a surgical shunt in single
ventricle patients can be investigated using such a model,
which enables considerations of how the shunt resistance
influences the balance of blood flow through various path-
ways in light of systemic resistances and heart behavior
(Esmaily-Moghadam et al., 2012). After defining the
physics of the 3D and reduced-order domains, the coupled
system must be solved by a numerical method that is both
stable and modular. A summary of recent methods for
stable and efficient coupling can be found in Marsden and
Esmaily-Moghadam (2015).

Depending on the complexity and order of the ODE
network governing the LPN, one may use either a mono-
lithic or a coupled approach for solution of the 0D–3D
coupled system. A monolithic approach can be used when
the analytical solution of the ODE of 0D model is known
and can be implemented directly in the numerical solver
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and the entire problem solved simultaneously. The mono-
lithic approach is now widely accepted with details described
in foundational work by Vignon-Clementel et al. (2006)
and is best suited to simple models, at most containing few
time-dependent components, such as resistance and RCR
circuits.

For more complex circuit networks, obtaining the analyt-
ical solution of a high-order nonlinear ODE is not practical,
and the system must be solved numerically to obtain the
Dirichlet-to-Neumann relationship. Use of the monolithic
approach is no longer practical in this case, and parti-
tioned approaches have been introduced by several groups
Esmaily-Moghadam et al. (2013b), Ismail et al. (2013), and
Kuprat et al. (2013). The key concept of the partitioned
approach is to have a separate solver for the 0D domain
that is coupled to the 3D solver through a well-defined
interface. Numerical solution of the ODEs in the 0D
solver, for example, with a Runge–Kutta time-stepping
scheme, enables simulation of circuits with multiple
time-dependent and nonlinear components and multiple
organ blocks.

Recent studies have also addressed issues of numerical
divergence due to back flow, as well as specialized precon-
ditioners (Esmaily-Moghadam et al., 2011, 2013a). While
recent work has largely focused on 0D LPN models as the
choice of reduced-order model, we note that multiscale
modeling methods can be extended to 1D models by
replacing the ODE governing the 0D model with partial
differential equations governing the 1D model, while
keeping the coupling scheme unchanged.

4 NOVEL COMPUTATIONAL TOOLS

4.1 Tissue growth and remodeling

Blood vessels exhibit remarkable ability to adapt throughout
life adaptations in development and aging; to injury such
as in wound healing and vasospasm; in disease, such as
atherosclerosis and aneurysms; and lastly, adaptations to
chronic increase in flow in endurance training, or to hyper-
tension. These adaptations result in changes in vessel shape
and material properties and depend on an array of factors
such as gene pathways, biochemical processes in the vessel
wall, and, as numerous findings over the past few decades
indicate, the mechanical environment of the vessel. Many
observations at the subcellular, cellular, and even cell matrix
levels point to the existence of a “preferred” or “home-
ostatic” mechanical state across multiple space and time
scales. Thus, it is thought that vascular G&R happens in
response to a significant alteration of the homeostatic state
of a vessel (Humphrey, 2008). Changes in the shape and

mechanical properties of blood vessels are ultimately related
to changes in its constituents: resident cells (smooth muscle
and endothelial cells) and the extracellular matrix. The main
remodeling agents in the vessel wall are the endothelial cells,
vascular smooth muscle cells, and fibroblasts.

From a computational standpoint, two main methodologies
have been proposed to study cardiovascular tissue G&R: a
kinematic growth approach (Taber, 1998; Rachev, 2000) and
a constrained mixture approach (Humphrey and Rajagopal,
2002; Watton et al., 2004; Kuhl and Holzapfel, 2007). Kine-
matic growth formulations model the G&R without repre-
senting the underlying biochemomechanical mechanisms
modulating growth. On the other hand, constrained mixture
models incorporate the response of smooth muscle and
collagen fibers to changes in mechanical loading (or poten-
tially other biochemical stimuli). Each constituent can be
produced and removed over time. The total mass of the
mixture M(𝜏) at any given time 𝜏 ∈ [0, s] is given by a
balance of production and survival functions (Baek et al.,
2006):

M(s) =
∑

i

Mi(s) = 1
J(s)

∑
i

{
Mi(0)Qi(s)

+∫
s

0
mi(𝜏)qi(s − 𝜏)J(𝜏)d𝜏

}
(16)

where J(𝜏) is the determinant of the deformation gradient
F(𝜏), Qi(s) the fraction of the ith constituent that was
present at time 0 and still remains at time s, mi(𝜏) the
true rate of production of the ith constituent at time 𝜏 per
unit area, and qi(s − 𝜏) its survival function, that is, the
fraction of constituent i produced at time 𝜏 that remains at
time s. The mass fractions of each constituent i 𝜙i(s) (i =
elastin, collagen1, collagen2, etc.) are given by

𝜙i(s) = Mi(s)
M(s)

such that
∑

i

𝜙i(s) = 1 ∀ s (17)

For an elastic body, the Cauchy stress T for the mixture can
be given by sum of passive and active strain energy function
contributions:

T(s) = 2
J(s)

F(s)
𝜕wR(s)
𝜕C(s)

F(s)T + T(act)(s) (18)

where C = FTF. The passive contribution to strain energy of
the mixture per unit reference area wR is defined as the sum of
the energy stored in the elastin-dominated amorphous matrix
and the multiple families of collagen, namely

wR(s) = we
R(s) +

∑
k

wk
R(s) (19)
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The strain energy for the elastin-dominated matrix is typi-
cally assumed to be neo-Hookean. For collagen, the form of
the strain energy function is assumed identical for all fiber
families and is typically given by an exponential Holzapfel
form (Holzapfel et al., 2000). This is an illustrative example
of a linearized form for the rate of mass production (Figueroa
et al., 2009):

mk(s) = M(s)
M(0)

(k𝜎(𝜎k(s) − 𝜎h) + k𝜏(𝜏w(s) − 𝜏h
w) + mk

basal)
(20)

where k𝜎 and k𝜏 are scalar parameters that control the
stress-mediated G&R and mk

basal is a basal rate of mass
production for the kth fiber family. At the homeostatic state,
therefore, the production rate follows the basal rate.

In Figueroa et al. (2009), Humphrey, Figueroa and
colleagues developed a “fluid-solid-growth” (FSG) formu-
lation in which the hemodynamic forces acting during the
cardiac cycle pin an FSI simulation provide the loads for the
vascular G&R formulation, defined on a timescale of weeks
to months, which in turn provides the updated geometry and
material properties for the hemodynamic simulation. This
FSG framework was used to study the long-term evolution
of a basilar artery aneurysm under different mechanical
stimuli.

4.2 Parameter estimation and uncertainty
quantification

4.2.1 Parameter estimation via filtering techniques

A primary challenge in constructing truly patient-specific
hemodynamic models is the calibration of numerous
parameters required to define both the mechanical properties
of the vascular model (e.g., distribution of stiffness and
perivascular tissue support) and in the inflow and outflow
BCs so that the numerical predictions are consistent with
clinical data. For 3D computational models, the high cost
of a single forward simulation necessitates an efficient
parameter estimation strategy that minimizes the number of
model evaluations.

While information on flow and wall motion can be readily
obtained from magnetic resonance imaging and computed
tomography, reliable information on pressure can only be
obtained via invasive catheterization. Lack of pressure data
thus hinders knowledge of vascular stiffness and resistance.
Typically, estimation of stiffness and resistance is done iter-
atively using traditional optimization approaches. This step
is the most computationally expensive.

Traditional approaches for parameter estimation relied on
defining a cost function constructed from the difference
between data and simulation results, and performing classic

optimization. This approach is quite expensive and is not
particularly well suited for time-dependent problems.

Recently, data assimilation strategies based on Kalman
filter theory (Julier et al., 2000), in particular reduced-order
unscented Kalman filter (ROUKF) formulations, have been
used to estimate parameters in a number of cardiovas-
cular and cardiac electrophysiology applications (Chapelle
et al., 2013; Marchesseau et al., 2013; Xi et al., 2011;
Moireau et al., 2012) in patient-specific vascular models.
Unlike classic optimization, the Kalman filter is a sequential
approach well suited to handle dynamical systems in which
time-resolved measurements (data) are available. Given an
evolution equation

Ẋ = A(X) (21)

where X is the state and A a model operator (e.g.,
Navier–Stokes), the Kalman filter adds a correction
K(Z − H(X)), where Z − H(X) is the difference between a
measurement Z and a model prediction H(X) (i.e., an inno-
vation), and K is a gain operator. In addition to parameter
estimation, the Kalman filter has perhaps a more interesting
application in model refinement: indeed, the evolution
equation

Ẋ = A(X) + K(Z − H(X)) (22)

can be seen as a balance between model (which might
be fundamentally inadequate) and gain-regulated data. This
framework enables the assessment of the suitability of a
given model by identifying situations in which the estimated
model parameters do not converge to steady values.

These techniques, albeit expensive (e.g., in the ROUKF,
one must run p + 1 forward problem simulations to estimate
p parameters), could make the process of parameter esti-
mation completely automatic and operator independent, a
highly critical feature in order to facilitate clinical translation
of computational tools.

4.2.2 Uncertainty quantification

The adoption of simulation tools to predict surgical outcomes
is increasingly leading to questions about the variability of
these predictions in the presence of uncertainty associated
with the input clinical data. A pitfall of current simulation
methods is that they often fail to acknowledge or quantify
the numerous sources of uncertainty involved in the clinical
data assimilation and modeling process. As simulation data
are increasingly incorporated into disease research, clinical
trials, and the FDA approval process, there is a pressing
need to establish strict guidelines for assessing the impact
of uncertainty on simulation predictions.

A typical CV simulation is a multistep process consisting
of 3D model reconstruction from medical image data, mesh
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generation, tuning BCs to match physiologic and clinical
data, flow simulation, and feedback to clinicians. This
process involves numerous sources of uncertainty. Uncer-
tainties stem from assimilation of clinical measurements
(heart rate and blood pressure), echocardiography data
(stroke volume, ejection fraction, and cardiac output), phase
contrast and other MRI data, and cardiac catheterization
data. Additional uncertainties stem from vessel-wall material
properties and physiologic data. Noise, artifacts, and limited
temporal and spatial resolution in CT and MRI image data
also lead to uncertainty in the image segmentation process.
These input uncertainties propagate nonlinearly through the
modeling process, resulting in predictions that should be
reported with associated statistics and confidence intervals
on a patient-specific basis.

Solver performance is of utmost importance when
performing optimization and UQ, both of which require
running numerous simulations either in parallel or in succes-
sion. As CV simulations typically require multiple hours
of run time on a large parallel cluster, Monte Carlo-like
strategies quickly become computationally intractable
for large problems. Maintaining tractability thus requires
both optimized solver performance, for example, using
specialized coupling and preconditioning methods, and
efficient algorithms to limit the required number of function
evaluations for convergence.

Recent work has applied stochastic collocation for UQ in
computational fluid dynamics (CFD), providing probability
density functions (PDFs) and confidence intervals on simula-
tion outputs (Ghanem and Spanos, 1991; Xiu and Hesthaven,
2005; Babuška et al., 2007). Collocation methods generally

offer substantially better convergence than traditional Monte
Carlo methods, are nonintrusive to implement, and are highly
parallelizable. In the collocation scheme, stochastic space is
approximated using mutually orthogonal interpolating func-
tions and can then be queried at any point and PDF’s can be
constructed. This method is specifically designed for UQ in
large-scale simulations, such as CFD simulations in complex
geometries. Efficient application of UQ with stochastic
collocation using sparse grids has been demonstrated for
idealized and patient-specific cardiovascular models using
a limited number of stochastic parameters (Sankaran and
Marsden, 2010, 2011; Sankaran et al., 2010). These studies
employed Smolyak sparse grids to handle parametric uncer-
tainty and quantify predictive uncertainty in terms of PDFs
and confidence intervals (Babuška et al., 2007; Xiu and
Hesthaven, 2005; Ghanem and Kruger, 1996; Najm, 2009).

Recent work has also introduced methodologies for
full propagation of uncertainty from clinical data to
virtual surgery predictions in single-ventricle palliation,
as illustrated in Figure 7. A recent study characterized the
preoperative clinical uncertainty related to indirect wedge
catheter measurements of mean pulmonary artery pressure
and MRI-derived right pulmonary flow split. Inverse
Bayesian estimation was then used to infer the distributions
of boundary resistance modes, leading to the expected clin-
ical PDFs and used stochastic collocation on sparse grids to
propagate these BC distributions to the postoperative results.
The effect of relieving the left pulmonary artery stenosis was
also quantified both in terms of change in average results
and associated confidence intervals (Schiavazzi et al., 2015).
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Figure 7 shows how the first two statistical moments of
clinical quantities of interest have been affected by surgery,
showing that postoperative flow split following surgical
removal of left pulmonary stenosis becomes more difficult
to predict due to increased sensitivity to variation in the
BCs. Conversely, estimation of the pressure drop becomes
more reliable. Figure 7 also shows the spatial distribution
of variance in the velocity field for pre- and postoperative
models. These methods can also be used to target-specific
areas of data collection for model improvement. Recently,
methods combining multiresolution representations and
sparsity-promoting recovery algorithms have shown promise
for reducing the number of model evaluations needed to
compute accurate response statistics for multiscale CV
models (Schiavazzi et al., 2014).

4.3 Optimization

Coupling optimization to cardiovascular simulations has
potential to improve surgical designs and enable individ-
ualized treatment planning. Optimization methods were
first introduced in the field of cardiovascular modeling
primarily in two-dimensional and steady flow problems
(Agoshkov et al., 2006a,b; Abraham et al., 2005; Quar-
teroni and Rozza, 2003) and have recently been expanded
to complex, three-dimensional, unsteady simulations
(Esmaily-Moghadam et al., 2012; Yang et al., 2010).
The coupling of optimization algorithms to blood flow
simulations is particularly challenging because each cost
function evaluation requires an unsteady, 3D solution of
the Navier–Stokes equations on multiple processors. These
evaluations are computationally expensive, and gradient
information is often difficult to obtain.

Shape optimization can be used for virtual surgery design
in which a patient-specific model is optimized to mini-
mize a disease-related cost function derived from the flow
field. Examples of surgery optimization include identifying
optimal angles and radii for bypass grafts and finding the
optimal shape of complex surgical connections for single
ventricle heart patients (Yang et al., 2013; Sankaran and
Marsden, 2010). Optimization can also be used in the design
of medical devices, including stents, ventricular assist
devices, and coil placement for cerebral aneurysms (Long
et al., 2013; Gundert et al., 2012a,b). Outside of shape
optimization, one can also apply optimization in the setting
of parameter identification for cardiovascular modeling. For
example, optimization can be used to identify parameters in
cardiovascular G&R or in determining material properties
from medical image data for FSI (Sankaran et al., 2013).

When choosing an optimization method, the primary
distinction is between gradient-based and derivative-free

methods. Factors contributing to this choice include the
availability of cost function gradients, computational cost
of the function evaluations, the level of noise and discon-
tinuities in the function, complexity of implementation,
the number of design parameters, convergence properties,
efficiency, and scalability.

A general optimization problem may be formulated with
linear bound constraints as follows:

minimize J(x)

subject to x ∈ Ω (23)

where J ∶ ℝn → ℝ is the cost function and x the vector
of design parameters. The parameter space is defined by
Ω = {x ∈ ℝn|l ≤ x ≤ u}, where l ∈ ℝn is a vector of lower
bounds on x and u ∈ ℝn a vector of upper bounds on x.
In a cardiovascular shape optimization problem, the func-
tion J(x) depends on the solution of the Navier–Stokes
equations, and the cost function value is computed in a post-
processing step.

Derivative-free algorithms such as the surrogate manage-
ment framework (SMF) have shown particular promise in
cardiovasclar blood flow simulation due to their flexible
implementation and ability to search globally in the param-
eter space. The main idea behind the SMF method is to
increase efficiency using a surrogate function to “stand in”
for an expensive function evaluation, while also benefiting
from the convergence properties of pattern search methods
(Audet and Dennis, 2004, 2006; Audet, 2004).

The SMF algorithm typically consists of a SEARCH step,
employing a Kriging surrogate function for improved effi-
ciency, together with a POLL step to guarantee convergence
to a local minimum (Lophaven et al., 2002; Simpson et al.,
1998). The exploratory SEARCH step uses the surrogate to
select points that are likely to improve the cost function but
is not strictly required for convergence. Convergence is guar-
anteed by the POLL step, in which points neighboring the
current best point on the mesh are evaluated in a positive
spanning set of directions to check if the current best point is
a mesh local optimizer.

All points evaluated in either the SEARCH or POLL step of
the SMF algorithm must lie on a mesh in the parameter space.
The vectors defining the mesh directions must positively span
ℝn (Lewis and Torczon, 1996). If we define D as a matrix
whose columns form a positive spanning set in ℝn, then the
set of mesh points surrounding a point x are given by

M(x,Δ) = {x + ΔDz ∶ z ∈ ℕnD} (24)

where Δ is the mesh size parameter and nD the number
of columns in D. A positive spanning set is simply the set
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of positive linear combinations of the vectors making up
the mesh directions (Davis, 1954). A set of n + 1 POLL
points are required to generate a positive basis, where n
is the number of optimization parameters. Following the
abovementioned definition, the mesh in SMF may be refined
or coarsened by changing Δ > 0, and the mesh may be
rotated from one iteration to the next (Torczon, 1997).

Convergence is reached when a local minimizer on the
mesh is found, and the mesh has been refined to the desired
accuracy. Each time new data points are found in a SEARCH
or POLL step, the data is added to the surrogate and it is
updated. The steps in the algorithm are summarized below,
where the set of points in the initial mesh is M0, the mesh at
iteration k is Mk, and the current best point is xk.

1. SEARCH
(a) Identify a finite set Tk of trial points on the mesh Mk.
(b) Evaluate J(z) for all trial points z ∈ Tk ⊂ Mk.
(c) If for any trial point in Tk, J(z) < J(xk), a lower cost

function value has been found, and the SEARCH is
successful. Increment k and go back to (a).

(d) Else, if no trial point in Tk improves the cost func-
tion, SEARCH is unsuccessful. Increment k and go
to POLL.

2. POLL
(a) Choose a set of positive spanning directions, and

form the poll set Xk as the set of mesh points adjacent
to xk in these directions.

(b) If J(xpoll) < J(xk) for any point xpoll ∈ Xk, then a
lower cost function has been found and the POLL
is successful. Increment k and go to SEARCH.

(c) Else, if no point in Xk improves the cost function,
POLL is unsuccessful.
(i) If convergence criteria are satisfied, a converged

solution has been found. STOP.
(ii) Else if convergence criteria are not met, refine

mesh. Increment k and go to SEARCH.

Because the method has distinct SEARCH and POLL steps,
convergence theory for the SMF method reduces to conver-
gence of pattern search methods. We refer the reader to
the extensive literature summarizing the relevant mathemat-
ical convergence theory (Booker et al., 1999; Serafini, 1998;
Audet and Dennis, 2003; Torczon, 1997; Lewis and Torczon,
1999, 2000, 2002).

In the context of blood flow simulation, optimization has
been used in the design of bypass grafts (Sankaran and
Marsden, 2010) as well as surgeries for single ventricle
heart patients. Optimization has uncovered links among graft
position, cardiac output, and coronary oxygen delivery in
the first stage of single ventricle repair, the Blalock–Taussig
(BT) shunt (Esmaily-Moghadam et al., 2012). In this chapter,

optimization was performed on a 3D model of the aorta and
pulmonary arteries, using the closed-loop-lumped parameter
network discussed earlier. The graft geometry was parame-
terized and implanted into the model using automated scripts,
and the 3D unsteady Navier–Stokes equations were solved
in each function evaluation on a parallel architecture. A
typical example of the implementation of shape optimization
is shown in Figure 8.

5 CLINICAL APPLICATIONS

5.1 Pediatric cardiology

Multiscale modeling is of particular importance in pediatric
cardiology due to the strong interactions between surgical
methods and global physiology of the patient, including
cardiac performance. Single ventricle heart defects are a
particularly challenging class of congenital heart defects and
present a complex physiology requiring three open-chest
surgeries starting in the neonatal period and culminating
with the Fontan surgery (Fontan and Baudet, 1971). First
applied to single ventricle physiology by Dubini, Migli-
avacca, and Pennati, multiscale modeling extends standard
simulation tools to predict not only local hemodynamics such
as energy loss but also global quantities of clinical interest
including ventricular work load, pressure volume loops,
systemic and pulmonary pressure levels, and oxygen delivery
(Leval and Dubini, 1996; Dubini et al., 1996; Lagana et al.,
2002).

Early work on modeling single ventricle physiology
focused on power loss as the primary metric of performance
for comparing surgical geometries. Initial simulation studies
demonstrated improved energy efficiency in Fontan surgical
geometries with an offset between the superior and inferior
vena cava (SVC and IVC), leading to widespread adoption
of the offset concept in the surgical community (Migliavacca
et al., 2003; Dubini et al., 1996). Subsequent studies went
on to establish links between the geometry of the Fontan
junction and hemodynamic performance (Migliavacca et al.,
2003; Petrossian et al., 2006; Marsden et al., 2007; White-
head et al., 2007; DeGroff, 2008; Soerensen et al., 2007).
Some have also suggested that high power loss is likely
linked to poor clinical outcomes and high ventricular work-
loads and that energy reduction is of primary importance
in surgical design (Ensley et al., 2000a; Healy et al., 2001;
Ryu et al., 2001), though other studies have showed little
influence of power loss on clinically relevant parameters
(Kung et al., 2013; Baretta et al., 2011).

There have been a number of important studies illustrating
the use of multiscale modeling and surgical planning in
pediatric cardiology. Closed-loop models have been used
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Figure 9. Modeling process for virtual surgery, beginning with model construction from imaging data followed by virtual surgery (a) and
the patient-specific stage one models for two patients (b). The example shown compares the hemi-Fontan and Glenn surgeries in single
ventricle palliation, as well as surgical correction of pulmonary stenosis.

to devise a protocol for simulating exercise physiology
(Kung et al., 2014) and to compare surgical versus hybrid
approaches for stage-one single ventricle palliation (Corsini
et al., 2011; Hsia et al., 2011). Mock circuits, with hydraulic
elements and following the same principles in the in vitro
setting, have also been devised to validate simulations and
test surgeries and devices (Vukicevic et al., 2013).

Multiscale modeling is applied to compare competing
surgical approaches (Glenn vs hemi-Fontan) for the
second-stage surgery in single ventricle repair in Figure 9
(Kung et al., 2013). Multiple surgical options can then be
compared in a well-controlled “virtual experiment” since
parameter values remain fixed when comparing different
surgical geometries and stenosis levels. A key point here
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is that since one prescribes circuit element values rather
than directly prescribing flow and pressure, the closed-loop
model allows for dynamic adjustment of flow and pressure
waveforms resulting from changes in geometry without the
need to assume static BCs.

5.2 Coronary artery disease

Coronary physiology is challenging to model because coro-
nary flow is out of phase with aortic flow due to ventric-
ular contraction (Hoffman and Spann, 1990). Conventional
BCs such as resistance or Windkessel (RCR) models do not
capture physiologic coronary waveforms, and many studies
have been forced to rely on assumed pressure waveforms or
invasively obtained data. The challenge of capturing coro-
nary physiology has been addressed through several different
approaches using lumped parameter networks, 1D models,
and porosity models. Kim et al. introduced specialized coro-
nary lumped parameter BCs in the context of patient-specific
modeling (Kim et al., 2010b,c) in which coronary outlet
BCs were constructed to account for ventricular contraction
through incorporation of the myocardial pressure. An alter-
nate approach is to incorporate the effects of cardiac contrac-
tion through a vascular varying elastance model (KRAMS
et al., 1989). In this approach, the increased stiffness of the
myocardium during systole is postulated to drive the coro-
nary flow by modulating the compliance and resistance of
the embedded vessels.

The approach of Kim et al. (2010b,c) was extended by
Sankaran et al. (2012) to model the coronary circulation in
a closed loop using the coupling methods reviewed above.
This study reproduced the clinically observed diastolic
coronary flow peak and the postoperative increases in coro-
nary perfusion, based on noninvasive preoperative clinical
data. Bypass graft geometry affected local WSS, wall shear
stress gradients (WSSGs), and oscillatory shear index (OSI),
and results showed that higher anastomosis angles were
more optimal than lower angles, as hypothesised in earlier
human in vivo studies. Coronary simulations have also
been applied recently in the study of aneurysms caused by
Kawasaki disease, illustrating the potential of simulations to
improve risk stratification for determining appropriate anti-
coagulation therapy and treatment (Sengupta et al., 2012).
Recent work has also uncovered significant differences
in hemodynamic and biomechanical parameters between
arterial and venous grafts in patient-specific simulations
following coronary artery bypass graft (CABG) surgery
(Ramachandra et al., 2016). These findings may have impor-
tant implications for mitigating vein graft failure post CABG
surgery. Figure 10 illustrates the use of a closed-loop LPN
model of the coronary circulation, with contours of WSS

obtained from FSI simulations of a patient following CABG
surgery. Noninvasive patient-specific CFD studies of the
coronary circulation using MRI were recently performed
(Torii et al., 2010), including dynamic motion using an ALE
formulation and proximal velocity waveforms acquired
by MRI.

Recent studies have introduced a new noninvasive method
for FFR predictions using patient-specific simulations
(Taylor et al., 2013), with promising comparisons between
simulated and clinical data reported in recent clinical trials
(Nakazato et al., 2012; Koo et al., 2011; Min et al., 2012;
Nørgaard et al., 2014; Miyoshi et al., 2015). These methods
have been demonstrated to significantly improve the diag-
nosis of coronary artery disease and have the potential for
significant reductions in the cost of care (Douglas et al.,
2015; Hlatky et al., 2013).

Comprehensive multiscale models of the coronary circula-
tion have also been provided by Smith and others, primarily
using a coupled 1D modeling approach (Smith, 2004).
Pulsatile flow in a distributed 1D coronary network is
described, in which regional myocardial stresses were
applied on the vessels, calculated from an anisotropic finite
deformation model of the beating heart (Smith, 2004).
Coronary models have recently been extended to model
the interaction between coronary perfusion and myocar-
dial mechanics using poroelasticity (Vankan et al., 1997;
Cookson et al., 2012). Additional details on coronary
multiscale modeling can be found in the excellent review of
Lee and Smith (2012).

5.3 Transitional hemodynamic stages

Virtually, all blood flow simulation work to-date has been
done under the assumption of fixed, cycle-to-cycle periodic
pulsatile conditions. However, in order to provide adequate
blood supply to different vascular territories and to keep
blood pressure relatively constant under a wide range
of different physiological conditions, such as changes in
posture, digestion, stress, trauma, or exercise, the circula-
tory system is equipped with several regulatory feedback
and feedforward mechanisms. Affecting local and global
properties such as individual vessel tone and heart rate,
these feedback mechanisms enable the regulation of pres-
sure and flow throughout the body. Therefore, in order
to model changes in physiologic states, we must develop
control system workflows in the multiscale simulation
framework, in which error signals, response functions,
and communication between different components of the
system (typically represented via reduced-order models) are
enabled.
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Figure 10. Example of a closed-loop lumped parameter network coupled to a patient-specific model of coronary artery bypass graft surgery
(upper) and a simulated wall shear stress field (lower) (contours WSS magnitude min 0, max 15 dynes cm−2).

5.3.1 Models of global control – the baroreflex

One key regulatory mechanism is the arterial baroreflex – a
negative feedback system that responds to short-term varia-
tions in pressure by altering the state of the systemic circula-
tion in order to maintain pressure homeostasis. The barore-
flex can be broadly divided into three components: (i) the
baroreceptors cells, (ii) the vasomotor control center, and
(iii) the sympathetic and parasympathetic nervous systems
(Figure 11).

Connected to the vasomotor center of the brain via the
afferent pathways, the baroreceptor cells modulate their
nervous firing rate when the magnitude of stretch deviates
from prior baseline values. Equipped with a memory of 1–2
days, these cells are specialized for the role of short-term
pressure regulation (Guyton, 1992). The vasomotor center
of the brain interprets the afferent nervous activity of the
baroreceptors. Altered afferent activity arising from vari-
ations in pressure generates efferent activity within the
vasomotor center that is transmitted to different anatomical
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Figure 11. Schematic of the main components of the baroreflex. Here, the filled square and filled circle symbols refer to the location of the
carotid and aortic baroreceptors, respectively (Lau and Figueroa, 2015). (Lau, https://link.springer.com/article/10.1007%2Fs10237-014-
0645-x. Used under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/.)

regions of the systemic circulation. This efferent activity
travels through two different pathways, known as the sympa-
thetic response and the parasympathetic response, which
aim to restore blood pressure to baseline values. The sympa-
thetic and parasympathetic nervous systems innervate the
heart and the peripheral vessels, thereby allowing control of
heart rate, cardiac contractility, and vessel vasoconstriction.
Increased sympathetic activity results in vasoconstriction of
the peripheral vessels, increased heart rate, and increased
cardiac contractility factors that all have a restorative effect
on blood pressure. Conversely, increased parasympathetic
activity decreases heart rate and cardiac contractility,
thereby reducing systemic blood pressure (Guyton, 1992).
Changes in sympathetic and parasympathetic activities occur
simultaneously, for example, an increase in sympathetic
activity and a decrease in parasympathetic activity are
effected when an increase in blood pressure is desired. Via
the coordinated response of these activities, the baroreflex
rapidly alters the hemodynamics throughout the systemic
circulation, exerting global control of the pressure on a
beat-by-beat basis. The ability to transiently alter pressure

is clinically measured using an index referred to as the
baroreflex sensitivity (La Rovere et al., 2008). Defined
as the change in peak systolic pressure over successive
beats, this sensitivity is a direct measure of the strength
of the baroreflex response and has been shown to be an
indicator of mortality in diseased states (La Rovere et al.,
2001). Several mathematical models of the baroreflex have
been proposed thus far, with each examining different
aspects of this coupled system. So far, these approaches
have been mostly implemented using 0D (e.g., lumped
parameter network) models. Early 0D baroreflex models
include those developed by Ottesen (1997) and (Ursino
et al. (1998); these two models explored the long-term
stability of the negative feedback mechanism and the effec-
tiveness of the baroreflex in cases of blood loss (trauma),
respectively. Other 0D models have examined the baroreflex
under controlled scenarios, such as the tilt test in Heldt
et al. (2002), where orientation-dependent pressures were
imposed in different anatomical regions. More recently,
(Beard et al. (2013) examined the role of the baroreflex in
combination with other regulatory pressure mechanisms,
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Figure 12. (a) Model of the systemic circulation with both 3D and 0D components. Here, the boxed variables (left ventricular elastance
ELV , distal resistances R2i, arteriole resistance Ra, venous compliances Cvi, and unstressed volumes Vu, vi) denote controlled quantities. (b)
Comparison of experimental and simulated pressure recovery during the head up tilt test. The simulated data is taken from the left internal
carotid vessel in the model depicted in (a). In both plots, the start of the tilt test is denoted with the solid blue line. Data and simulation
show a close qualitative agreement in the pressure traces before, during, and after the tilt test.

such as the renin–angiotensin system, to explore the effects
of chronic baroreflex stimulation. Notable 3D–0D models of
the baroreflex include those developed by Kim et al. (2010a)
and Lau and Figueroa (2015). Kim employed a closed-loop

model of the circulation where a baroreflex response based
on the model reported by Ottesen et al. (2004) was triggered
by imposing arbitrary changes in the peripheral resistance
of the systemic circulation. Lau and Figueroa developed
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a more realistic baroreflex trigger, given by a change in
posture of the individual, such as those experienced during
a tilt test. That approach enabled the explicit control (rather
than direct imposition) of the peripheral systemic resis-
tance, one of the key factors effected by the baroreflex
system. Results obtained with this model are depicted in
Figure 12.

5.3.2 Models of local control

In the human circulation, in addition to the global control
mechanism of the baroreflex, there are localized feed-
back and feedforward mechanisms in certain vascular
beds that operate jointly with the baroreflex to regulate
pressure and flow in areas such as the cerebral, coro-
nary, and renal circulations. Local changes in pressure,
WSS, and/or metabolite concentrations trigger vascular
smooth muscle activation, affecting the arteriolar resis-
tance through changes in vessel diameter. Most of the key

contributions in the simulation of local auto-regulations
have been developed in the context of 0D models. Ursino
developed models for cerebral control (Ursino, 1988;
Ursino and Lodi, 1997; Ursino et al., 1998), Layton has
recently used mathematical models of renal auto-regulation
(Sgouralis and Layton, 2014), Feigl has developed models
of coronary auto-regulation involving both feedback and
feedforward components (Miyashiro and Feigl, 1993; Tune
et al., 2002). Pries and Secomb developed models for
structural (longer-term) adaptation in the microcircula-
tion (Pries et al., 2001). Recently, Arthurs et al. (2016)
developed a 3D–0D model of coronary autoregulation,
including both feedback and feedforward mechanisms and
used clinical data on coronary flow and pressure during
moderate exercise. The model could reproduce changes in
coronary hemodynamics over a time interval of 20 min by
just imposing the patient’s heart rate and peak pressure as
inputs (Figure 13).
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Figure 13. (a) Simulation of auto-regulation in coronary flow using patient data and a 3D–0D model featuring feedback and feedforward
control mechanisms (Arthurs et al., 2016). Good agreement is observed between the proportional change in coronary volumetric flow in the
control model (green line) and the patient-recorded coronary flow velocity data (red line). Without control of the coronary microvascular
resistance, it is not possible to reproduce the patient coronary flow response (blue line). The microvascular resistance is approximately
halved during exercise by the control system when it is active. (Arthurs, http://ajpheart.physiology.org/content/310/9/H1242. Used under
CC BY 3.0 https://creativecommons.org/licenses/by/3.0/.) (b) Direct comparison between simulated and patient-recorded coronary flow
velocity in the proximal region of the coronary tree, under near resting flow conditions (early exercise), and at high flow (late exercise). The
snapshot of the pressure distribution is at an early point of systole.
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6 FUTURE CHALLENGES

6.1 Adoption challenges

Cardiovascular simulations hold value as both a research
tool and, ultimately, a clinical tool to test novel surgical
concepts and individualize treatments for patients suffering
from congenital and acquired heart disease. Simulations can
also augment clinical imaging data and physician expertise
by providing predictions of patient risk for disease progres-
sion or adverse outcomes. However, several roadblocks have
prevented wider adoption of simulations for clinical use.
Among these are the high cost of simulations, often requiring
hours to days in high performance computing facilities, the
need for more extensive in vivo validation, and the challenges
of developing and incorporating models of physiologic and
biologic mechanisms.

There is a pressing need to develop standards and
provide worflows for code validation and verification.
The ever-increasing number of computer codes (commercial
and academic) used to perform cardiovascular simulations
makes it easier than ever to produce solutions. However,
these solutions are often times unphysiological, due to limi-
tations either in the software (e.g., inhability to incorporate
meaningful inflow and outflow BCs) or in the operator
(e.g., unfamiliarity with key aspects of the computational
modeling workflow). Recently, a number of “computer chal-
lenges” have been proposed to test computer codes under
different controlled scenarios (experimental or image-based)
(Stewart et al., 2012; Steinman et al., 2013; Janiga et al.,
2015; Berg et al., 2015). These challenges have sometimes
revealed an alarming variability in the results reported by
the different users (Stewart et al., 2012). The solution to
this problem may require the development of an acredi-
tation system to certify that a given user has the required
knowledge and expertise to perform meaningful blood flow
analyses with properly tested computer codes.

6.2 New application areas

While much of the field has focused on vascular hemody-
namics, the field of integrative cardiac modeling provides a
rich diversity of problems that have yet to be explored.

Prediction of thrombus formation is both notoriously chal-
lenging and crucial to clinical applications involving stroke,
plaque rupture and myocardial infarction, deep vein throm-
bosis, and embolism. The coagulation cascade is a complex
biochemistry system that is strongly influenced by mechan-
ical factors and thus neither can be examined independently.
Because thrombus formation is highly multiscale, accurate
models should incorporate fine-to-coarse-grained informa-
tion about blood biochemistry that can be coupled with

patient-specific hemodynamic models. While several groups
have had initial success developing biochemistry models of
the coagulation cascade, there remains a need for validation
against experiments using whole blood, and against clin-
ical data, and for numerical frameworks that can effectively
bridge multiple scales. Only with these developments will
such models be successfully translated to the clinical realm
for thrombus prevention and risk assessment.

Finally, development of integrative models of cardiac func-
tion, including myocardial contraction, electrophysiology,
ventricular hemodynamics, and valve motion, will allow the
field to move from the vascular to the cardiac realm. Such
models will require integration of multiphysics finite element
tools with capabilities for large-deformation FSI to capture
ventricular contraction and heart valve dynamics, nonlinear
and viscoelastic material models, cardiac mechanics models
of active heart contraction, and electrophysiology. This will
enable new research directions in congenital and acquired
cardiac diseases including heart failure, cardiomyopathy,
cardiac remodeling, valve dysfunction, aortic dissection,
ventricular thrombosis, and cardiac device design.

7 RELATED CHAPTERS

(See also Finite Element Methods, Arbitrary
Lagrangian–Eulerian Methods, Multiscale and
Stabilized Methods, Incompressible Viscous Flows,
Variational Multiscale Methods in Computational Fluid
Dynamics)
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