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SUMMARY

We present a systematic comparison of computational hemodynamics in arteries between a one-dimensional
(1-D) and a three-dimensional (3-D) formulation with deformable vessel walls. The simulations were per-
formed using a series of idealized compliant arterial models representing the common carotid artery, thoracic
aorta, aortic bifurcation, and full aorta from the arch to the iliac bifurcation. The formulations share identi-
cal inflow and outflow boundary conditions and have compatible material laws. We also present an iterative
algorithm to select the parameters for the outflow boundary conditions by using the 1-D theory to achieve
a desired systolic and diastolic pressure at a particular vessel. This 1-D/3-D framework can be used to effi-
ciently determine material and boundary condition parameters for 3-D subject-specific arterial models with
deformable vessel walls. Finally, we explore the impact of different anatomical features and hemodynamic
conditions on the numerical predictions. The results show good agreement between the two formulations,
especially during the diastolic phase of the cycle. © 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

One-dimensional (1-D) and three-dimensional (3-D) formulations have been used extensively to
simulate arterial hemodynamics. Landmark contributions in 1-D modeling include the works of
Hughes and Lubliner [1], Stergiopulos et al. [2, 3], Olufsen et al. [4], Formaggia et al. [5],
Sherwin et al. [6], Bessems et al. [7], Mynard and Nithiarasu [8], Alastruey et al. [9], and Müller
and Toro [10]. Key contributions to 3-D blood flow modeling in deformable vessels include the
works of Perktold et al. [11], Taylor et al. [12], Quarteroni et al. [13], Steinman et al. [14], Cebral
et al. [15], Gerbeau et al. [16], and Figueroa et al. [17]. 1-D methods have been used to improve
our theoretical understanding of hemodynamics, in particular to study the mechanisms underlying
pulse wave propagation [18, 19] and also clinically in applications such as wave intensity analysis
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[20]. Accurate predictions can be made when the flow is predominantly unidirectional and there
are no sudden changes in the cross-sectional area. However, 1-D models require the introduction
of additional empirical laws to account for recirculation and pressure losses in the presence of ves-
sel curvatures, stenoses, aneurysms, etc. [2, 21, 22]. These geometric complexities are intrinsically
captured with 3-D models, which can provide localized hemodynamic quantities such as wall shear
stress, particle residence time, etc. Additionally, 3-D modeling enables the use of structurally moti-
vated biaxial constitutive laws [23] and circumferentially varying mechanical properties for the
arterial wall [24] and the simulation of complex processes such as the interactions between the arte-
rial wall and medical devices [25, 26]. Nevertheless, 1-D models typically contain far fewer DOFs
in comparison with 3-D models (on the order of 103 vs. 106), and the simulations can be executed
in a matter of minutes on a personal laptop computer.

Previous works have compared 1-D models and 3-D models with rigid walls in the context of cere-
bral arterial flow [27,28] and with deformable vessels in the aorta under steady flow [29]. However,
a systematic comparison between 1-D and 3-D models in a variety of deformable arterial configu-
rations was still missing in the literature. In general, a good agreement between the two modeling
techniques is expected when the flow is mostly unidirectional and there are no sudden changes in
cross-sectional area, whereas larger differences are expected in more complex configurations, such
as in curved vessels and areas with highly dynamic flows. For a proper comparison to be made, a
framework containing the 1-D and 3-D formulations that share equivalent boundary conditions and
material laws must be developed. In general, this framework can be used to quickly estimate bound-
ary condition parameters and distributions of material coefficients for an extensive multi-branched
3-D model (e.g., a full-body scale arterial network model [30]), a task that is more time-consuming
in the isolated 3-D setting. The purpose of this paper is twofold:

1. To perform a systematic comparison between cross-sectionally averaged hemodynamics (i.e.,
average flow, average pressure, and radial deformation) obtained with two specific imple-
mentations of the 1-D and 3-D formulations in a series of four increasingly complex ide-
alized geometries representing the common carotid artery (CCA), the thoracic aorta, the
aorto-illiac bifurcation, and the full aorta up to the first generation of branches. This sim-
plified set of geometries, as opposed to patient-specific geometries, allows for a more
direct comparison between the 1-D and 3-D schemes. We investigated the differences in
the hemodynamic predictions introduced by increased Reynolds number, the presence of
tapering, curvature, and bifurcation angles. To ensure a consistent comparison between for-
mulations, we used equivalent constitutive laws in the 1-D and 3-D formulations, imposed
identical flow waveforms and velocity profiles at the inlets, and coupled the same three-
element Windkessel models at the outlets. In these comparisons, the 1-D geometric param-
eters were obtained directly using dimensions taken from the idealized 3-D geometries
(Figure 1).

2. To develop a computational framework where the 1-D formulation is used to quickly determine
boundary condition and material parameters to match patient data such as flow and pressure
waveforms and localized measurements of distensibility. Once evaluated, the parameters are
fed directly to the 3-D model to perform localized studies. Our aim is to exploit the advantages
of both schemes: a computationally efficient 1-D model combined with a full 3-D model shar-
ing identical boundary condition and constitutive laws. This overlapping 3-D/1-D approach
can potentially accelerate the solution turn-around time of complex 3-D models, therefore
improving their clinical applicability, and differs from previous efforts [13,31–33], where 3-D
and 1-D models were coupled to represent spatially distinct parts of the arterial tree.

The structure of this paper is as follows: we first present the details of the 1-D and 3-D formulations
utilized in this work, paying special attention to the description of boundary conditions and material
laws that are consistent between the two approaches. We then compare the numerical predictions
of both methods in a series of idealized geometries. Finally, we describe and discuss the similar-
ities and differences in the results between the two formulations and finish with conclusions and
future work.

© 2013 The Authors. International Journal for Numerical Methods
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Figure 1. Schematic representation of the modeling approach adopted in this study: 1-D and 3-D models
share common inflow and outflow boundary conditions, as well as compatible consitutive laws. The 1-D

geometry is obtained from the centerlines of the 3-D model, and vessel diameters and wall thickness
are identical.

2. METHODS

2.1. One-dimensional formulation

Conservation of mass and momentum applied to a 1-D impermeable and deformable tubular control
volume of an incompressible Newtonian fluid yields [6, 19, 34]8̂̂
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where x is the axial coordinate along the vessel, t is the time, A.x, t / is the cross-sectional area
of the lumen, U.x, t / is the axial blood flow velocity averaged over the cross-section, P.x, t /
is the blood pressure averaged over the cross-section, �f is the density of blood assumed to be
constant, and f .x, t / is the frictional force per unit length. The momentum correction factor in
the convection acceleration term of Equation (1) was assumed to be equal to one, following the
work of Stergiopulos et al. [2]. Equation (1) can also be derived by integrating the incompressible
Navier–Stokes equations over a generic cross section of a cylindrical domain [1, 35–37].

In this work, the velocity profile is assumed to be constant in shape and axisymmetric. The axial
velocity (u) is assumed to have the shape

u.x, � , t /D U.x, t /
� C 2

�

"
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�
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��#
, (2)

where r.x, t / is the lumen radius, � is the radial coordinate, and � is the polynomial order. Following
[35], � D 9 provides a good compromise fit to experimental data obtained at different points in the
cardiac cycle.

Integration of the Navier–Stokes equations of an incompressible Newtonian fluid for axisym-
metric vessels yields f .x, t / D 2��r @u

@�
j�Dr [35]. For the velocity profile given by Equation (2),

we have f D �2 .� C 2/��U in which the local f is proportional to the local flow. Note that
� D 2 leads to the Poiseuille flow resistance f D �8��U . For all of the simulations presented,
�D 4 mPa s and �f D 1060 kg/m3.
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An explicit algebraic relationship between P and A (or tube law) is also required to close
Equation (1) and account for the fluid–structure interaction of the problem. In general, we have
P DA.A.x, t /I x, t /, where the function A depends on the model used to describe the dynamics of
the arterial wall.

We solved the system of equations in (1) with the elastic tube law described in Section 2.3 using
a DG scheme with a spectral/hp spatial discretization and a second-order Adams–Bashforth time
discretization [9, 19]. The initial conditions are .A.x, 0/,U.x, 0/,P.x, 0// D .A0.x/, 0, 0/, where
A0 is the initial area that yields Ad at P D Pd, with Pd as the diastolic pressure. In all our 1-D sim-
ulations, we implemented boundary conditions and solved matching conditions at bifurcations by
taking into account the correct propagation of the characteristic information and neglecting energy
losses [19, 38].

2.2. Three-dimensional formulation

The coupled-momentum method [17] is used to formulate the 3-D fluid-structure interaction prob-
lem. Here, the DOFs for the vessel wall (displacements u) are described as a function of the fluid
velocities at the fluid–wall interface, †, using an ‘enhanced’ membrane formulation. Under the
assumption of a fixed fluid domain, i.e. linearized kinematics of the vessel wall, the strong form is
defined in an Eulerian configuration:

�f. PvC v � r v/ D �r pCr � �fC b in �f,

r � v D 0 in �f,

v D vs on †,

(3)

�s Pvs �r � � s D
1

h
fsupport in†� h,

� s � ns D .�pI C �f/ � ns

, (4)

where �f denotes the fluid domain, v is the fluid velocity, p is the pressure, b is a body force (here,
assumed to be zero), and �f D �.r vC .r v/

T/ is the viscous stress tensor for a Newtonian fluid.
The arterial wall is treated as a thin membrane with thickness h and density �s where vs is the solid
velocity, � s is the membrane stress tensor, and ns is the outward normal at the fluid–wall interface.
The value of �s was 0.001 g/mm3 for all models.

To account for the mechanical forces exerted by the external tissues on the arterial walls, an addi-
tional term, fsupport D .ksuCcsv/, was included in Equation (4), which approximates the mechanical
behavior of the external tissue [39], where the parameters ks and cs are the stiffness and damping
coefficients. This additional force can be used to eliminate spurious and nonphysiological oscilla-
tions in specific cases where the geometry is elongated, and the vessel wall experiences asymmetric
loads. For the simulations presented in this paper, unless explicitly stated, the values of ks and cs are
set to zero.

With the assumption that the vessel wall thickness (h) is small and with appropriate choices for
the solution and test function spaces, S ,P , and W , the strong form gives rise to the variational
equation: Z

�f
fw � .�f PvC �fvr v� b/Cr w W .�pI C �f/�r q � vgdv

C
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Z
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Z
†

fh�sw � PvC hr w W � sCw � .ksuC csv/C qv � nfgdaD 0

8x 2�f,8t 2 Œ0,T �,

(5)

where w 2W and q 2 P are test functions. 	in is a Dirichlet boundary where the test functions w
vanish and where the fluid velocities are prescribed, that is, at the inlet. The traction term h.v,p/
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on the outlet boundary 	out is given as a function of v and p depending on the reduced-order model
(i.e., three-element Windkessel) chosen to represent the downstream vasculature, as described by
Vignon-Clementel et al. [40, 41]. The augmented Lagrangian scheme described by Kim et al. [42]
was used to stabilize the outflow velocities in the presence of flow reversal at the outflow boundaries.

To discretize and solve Equation (5), we employed a stabilized semi-discrete FEM on the basis
of the work of Brooks and Hughes [43], Franca and Frey [44], Taylor et al. [12], and Whiting
and Jansen [45], using equal-order interpolation (P1/P1 elements) for the velocity and pressure
fields. The generalized ˛-method [46, 47] was used to integrate the system of ordinary differential
equations resulting from the finite element discretization.

2.3. Material laws

The arterial wall was modeled as a thin, incompressible, homogeneous, isotropic, linear elastic
membrane characterized by an elastic modulus E, a Poisson’s ratio 
 D 0.5, and a thickness h.

In the 1-D model, the arterial wall is assumed to deform axisymmetrically, each cross-section
independently of the others, so that the relationship between circumferential hoop stress, T� , and
radial displacement is

T� D
E

1� 
2
r � rd

rd
, (6)

where rd is the radius at diastolic pressure (Pd). Applying Laplace’s law, T� D .P � Pd/r=h, and
assuming that 1=r can be approximated by 1=rd, we obtain the tube law [9]
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where Ad.x/ is the luminal area at diastolic pressure. In Equation (7), both E and h are functions
of the position x. The pulse wave speed c.x, t / is related to A through

c D

s
ˇ

2�fAd
A1=4. (8)

The initial area A0 is calculated by replacing P D 0 and AD A0 in Equation (7), which leads to

A0 D Ad
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ˇ
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. (9)

In the 3-D formulation, no assumptions regarding axisymmetry were made. The enhanced mem-
brane stress tensor � s is given as a function of a tensor QK of material parameters, a tensor QP
describing the prestress of the wall, and the infinitesimal strain tensor Q�; � s D QK Q� , with
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where k is a transverse shear factor, and u is the displacement vector [48]. In general, the prestress
tensor can be specified using a variety of methods [39, 48, 49]. In the case of linear elasticity, the
‘prestress’ can be incorporated by subtracting a reference displacement (i.e., at diastole) from the
displacement field.
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2.4. Boundary conditions

The inlet and outlet boundary conditions were chosen to be consistent between the 1-D and
3-D schemes. At the inlet, we prescribed a known flow rate with an axisymmetric velocity profile
(Equation (2)). At the outlet of each terminal vessel, we coupled a three-element Windkessel model
(Figure 1). This zero-dimensional (0-D) electrical circuit analog of the downstream vasculature
consists of a resistance (R1) connected in series with a parallel combination of a second resistance,
(R2), and a compliance, (C ); Pout is the pressure at which flow to the microcirculation ceases and is
assumed to be zero in all models. The pressure and the flow at an outlet of the 1-D or 3-D domain is
related by

Q

�
1C

R1

R2

�
CCR1

@Q

@t
D
P �Pout

R2
CC

@P

@t
. (12)

The numerical implementation of this 0-D model is detailed in [19, 38] for the 1-D formulation and
[41] for the 3-D formulation.

2.5. Iterative procedure for the determination of outflow Windkessel parameters

The parameters of the three-element Windkessel outflow models were calculated as described in the
succeeding text. Given a target diastolic (Pd) and systolic (Ps) pressure and flow rate at the inlet
(Qin.t/), the initial estimate for the net peripheral resistance (RT) was calculated as [50]

RT D
Pm �Pout

Qin

, Pm D PdC
1

3
.Ps �Pd/, (13)

where Qin is the mean flow rate, and Pm is the mean blood pressure, assumed uniform throughout
the arterial network. We then calculated the resistance R1CR2 at the outlet of each terminal vessel
that yields the desired flow distribution and satisfies

1

RT
D

MX
jD2

1

R
j
1 CR

j
2

, (14)

where M is the number of terminal branches, and j D 1 corresponds to the aortic root. For each
individual outlet, the proximal resistance (R1) is assumed to be equal to the characteristic impedance
of the upstream 1-D domain, that is,

R1 D
�fcd

Ad
, (15)

where cd and Ad are, respectively, the wave speed and area at diastolic pressure (Pd). This choice
of R1 minimizes the magnitude of the waves reflected at the outlet of the 1-D domain [38].

The total compliance (CT) was calculated from either: (i) the time constant � D 1.79 s of the expo-
nential fall-off of pressure during diastole given in [51] or (ii) using an approximation to CT D

dV
dP

,
where V.t/ is the total blood volume contained in the systemic arteries. According to [50],

CT D
�

RT
, (16)

which can be calculated once RT is determined using Equation (13). Alternatively, CT D
dV
dP

can
be approximated by [50]

CT D
Qmax �Qmin

Ps �Pd
�t , (17)

where Qmax and Qmin are the maximum and minimum flow rates at the inlet, and �t is the differ-
ence between the time atQmax and the time atQmin. We use both Equations (16) and (17) depending
on the available input data.
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According to [52], we have

CT D CcCCp, Cc D

NX
iD1

C i0D, Cp D

MX
jD2

R
j
2C

j

R
j
2 CR

j
1

, (18)

where Cc is the total arterial conduit compliance, Cp is the total arterial peripheral compliance, N
is the total number of vessels in the 1-D domain, M � 1 < N is the number of terminal branches
(j D 1 denotes the inlet and is not included in the sum), R1, R2, and C are the parameters of the
three-element Windkessel model (Figure 1), and C0D is the compliance of each vessel, which is
calculated as

C0D D
AdL

�f.cd/2
, (19)

where L is the length of the vessel. We calculated Cp D CT � Cc and distributed it following the
methodology described by Alastruey et al. [38]. More specifically, we have

QC j D Cp
RT

R
j
2 CR

j
1

, (20)

where QC j is the terminal compliance of each branch distributed in proportion to flow as described
by Stergiopulos et al. [2]. We then introduced a correction factor to arrive at the final value of C j :

C j D QC j
R
j
2 CR

j
1

R
j
2

D Cp
RT

R
j
2

. (21)

This expression follows from a linear analysis of the 1-D equations in a given arterial network in
which each terminal branch is coupled to a three-element Windkessel model [52].

For all of the simulations, the Windkessel compliances and resistances .C j , j D 2, : : : ,M/�
R
j
1andRj2 , j D 2, : : : ,M

�
were iteratively calculated to achieve physiologically realistic pressure

ranges. To reach a desired pulse pressure (Ppulse D Ps �Pd) and diastolic pressure (Pd) at a partic-
ular vessel, we calculated R0T and C 0T given by Equations (13) and (16) or (17) using the iterative
formulae

RnC1T DRnTC
�P nm

Qin

, �P nm D Pd �P
n
d , (22)

C nC1T D C nT �
Qmax �Qmin�
P npulse

�2 �t �P npulse, �P npulse D Ppulse �P
n
pulse, (23)

where the superscript n is the iteration number of the Windkessel parameter estimation process
performed using the 1-D formulation, and P nd and P npulse are the diastolic and pulse pressure, respec-
tively, at a specific target location in the 1-D model, typically the inlet, at each iteration. Equations
(22) and (23) follow from a first-order Taylor expansion of Equations (13) and (17) around the cur-
rent mean and pulse pressuresP nm andP npulse, respectively, with�P nm approximated using the change
in diastolic pressure. The total compliance was adjusted by altering the total peripheral compliance
Cp, because the total conduit compliance Cc is a function of the vessel geometry and wall stiffness.
This process was iterated using the 1-D model until P nd and P npulse were smaller than 1% of the
target Pd and Ppulse, respectively. Figure 2 shows the evolution of the systolic, mean and diastolic
pressure, net peripheral resistance, and total compliance calculated using the 1-D formulation to
match the target systolic and diastolic pressures for the baseline aorta model. The final values of the
Windkessel compliances and resistances were used in the 3-D counterparts of the 1-D models.

Other methods have been proposed in the literature to estimate the parameters of the outflow
boundary conditions. A root-finding method is described by Spilker and Taylor [53] in the con-
text of 3-D models with compliant arterial walls. Devault et al. proposed a Kalman-filter-based
methodology in a 1-D model of the circle of Willis [54].

© 2013 The Authors. International Journal for Numerical Methods
in Biomedical Engineering published by John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm



N. XIAO, J. ALASTRUEY AND C. A. FIGUEROA

(a) (b) (c)

Figure 2. (a) Evolution of systolic
�
P ns

�
, mean

�
P nm

�
and diastolic

�
P nd

�
pressure, (b) net peripheral resis-

tance (RT), and (c) total compliance CT with the iteration number (n) for the baseline aorta. The target
systolic (Ps) and diastolic (Pd) pressures are shown in red dashed lines.

2.6. Error calculations

The numerical solutions of pressure P and volumetric flow Q were compared between the 1-D and
3-D models by using the following relative error metrics [9]:
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where Nt is the number of time points where the comparison is made (typically around several
thousand points over a single cardiac cycle depending on the time step size), P 1D

i and Q1D
i are the

pressure and flow results at each time point i from the 1-D simulation at a single spatial location,
and P 3D

i and Q3D
i are the cross-sectional averaged pressure and flow at each time point i from the

3-D model at a single cross section perpendicular to the vessel centerline. "P ,avg and "Q,avg are the
average relative errors for pressure and flow, respectively, over one cardiac cycle, and "P ,max and
"Q,max are the maximum relative error in pressure and flow. "P ,sys and "Q,sys are the errors for sys-
tolic pressure and flow, and "P ,dias and "Q,dias are the errors for diastolic pressure and flow. In order
to avoid division by small values of flow, we normalized the flow error metrics by the maximum
value of flow over the cardiac cycle, maxi

�
Q3D
i

�
. The error metrics were calculated over a single

cardiac cycle once both numerical solutions achieved periodic behavior.

3. RESULTS

We investigated the differences in the numerical prediction of flow and pressure between the 1-D
and 3-D formulations (where flow and pressure refer to cross-sectional averages in planes per-
pendicular to the vessel centerline) in a series of test cases by using idealized geometries. The
physical dimensions, vessel wall properties, and inflow and outflow boundary conditions were made
to be consistent between the 1-D models and their 3-D counterparts. Mesh independence stud-
ies were undertaken to ensure that the results in the final meshes were not affected by inadequate
mesh resolution.
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Table I. Normal hemodynamic properties of the human common carotid artery.

Property Value

Length, L 126 mm
Radius at diastolic pressure, rd 3 mm
Wall thickness, h 0.3 mm
Young’s modulus, E 700.0 kPa
Mean flow rate, Qin 0.39 l min�1

Systolic pressure, Ps 16.7 kPa
Diastolic pressure, Pd 10.9 kPa
Windkessel resistance, R1 2.4875 � 108 Pa s m�3

Windkessel compliance, C 1.7529 � 10�10 m3 Pa�1

Windkessel resistance, R2 1.8697 � 109 Pa s m�3

The geometry, inflow rate, and mechanical properties of the blood were taken from [17],
the Young’s modulus E from [65], and the pressures from [55, p. 343]. The parameters
of the RCR Windkessel model were calculated as described in the text. The resulting
wave speed at mean pressure is cm D 6.74 m s�1.

3.1. Baseline common carotid

We considered a straight cylindrical vessel with representative dimensions of the common carotid
artery (CCA). The initial total peripheral resistance (RT) and compliance (CT) were calculated
from Equations (13) and (17), respectively, using a reference value of mean blood pressure (Pm)
measured in a 23-year-old human [55, p. 343] and a reference inflow waveform [17]. The final
values of RT and CT were then computed as described in Section 2.5, requiring a single iteration
to achieve convergence to the target pressures at the outlet. The parameters of the CCA model are
given in Table I.

The 1-D simulation was run using six elements with a quadrature and polynomial order of 10
and a time step of 0.1 ms. The velocity profile order was � D 2. The initial area A0 D 0.22 cm2

that yields the reference diastolic area (Ad ) at P D Pd was calculated using Equation (9). The 3-D
geometry was constructed with the same dimensions as in the 1-D segment. The velocity on the
inlet boundary was prescribed using Equation (2) with � D 2 and with the same time-averaged flow
rate as at the inlet of the 1-D model. The 3-D simulation was run with a mesh containing 792,559
linear tetrahedral elements (145,394 nodes) and a time-step of 0.2 ms.

Figure 3 shows the numerical predictions of flow rate, pressure, changes in luminal radius, and
velocity profiles at several sites in the 1-D and 3-D models. The flow waveforms exhibit the typi-
cal attenuation observed in vivo between the inlet and outlet. We also include the pressure gradient
(given as the difference between inlet and outlet pressures) predicted by the two numerical schemes.
The results show excellent agreement between the two models, with average relative errors smaller
than 1%. However, even though the flow waveforms in 1-D and 3-D models are virtually identical,
differences can be observed in the velocity profiles. These differences result from the linearized
kinematics assumption (i.e., fixed computational domain) of the 3-D formulation, in contrast to
the 1-D model, which accounts for changes in the cross-sectional area. In all the examples consid-
ered in this manuscript, the 1-D velocity profiles were plotted in the reference configuration given
by the nominal (diastolic) diameter of the vessel to provide a qualitative comparison between the
profile shapes.

3.2. Baseline aorta

We considered a straight cylinder with diameter representative of the average diameter of the
thoracic aorta. Here, the initial peripheral resistance was calculated using systolic and diastolic
pressures from the study by Simon et al. [51], and the total compliance CT was calculated from the
time constant � D 1.79 s [51] of the exponential fall-off of pressure during diastole using Equation
(16). The final values of RT and CT were obtained after seven iterations to reach convergence to the
target pressures at the outlet. The parameters of the baseline aortic model are given in Table II.
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Figure 3. Baseline common carotid case. Top: flow rate and pressure with time at the inlet, midpoint and
outlet, radius with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model
(solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6). Bottom: velocity magni-
tude in the reference domain of the 3-D model (colormap). Velocity profiles of the 3-D model (solid lines,

axial velocity component) and the 1-D model (dashed lines) at three locations and two time points.

Table II. Normal hemodynamic properties of the human aorta, from the ascending
to the thoracic part.

Property Value

Length, L 24.137 cm
Radius at diastolic pressure, rd 1.2 cm
Wall thickness, h 1.2 mm
Young’s modulus, E 400.0 kPa
Mean flow rate, Qin 6.170 l min�1

Systolic pressure, Ps 16.8 kPa
Diastolic pressure, Pd 9.5 kPa
Windkessel resistance, R1 1.1752 � 107 Pa s m�3

Windkessel compliance, C 1.0163 � 10�8 m3 Pa�1

Windkessel resistance, R2 1.1167 � 108 Pa s m�3

The inflow rate was taken from [50] and the pressures from [51]. The parameters of
the RCR windkessel model were calculated as described in the text. The resulting wave
speed at mean pressure is cm D 5.17 m s�1.

For the 1-D model, the simulation was run using 12 elements with a quadrature and polyno-
mial order of 5 and a time step of 0.1 ms. The initial area was calculated using Equation (9) to be
A0 D 3.06 cm2. The polynomial order of the velocity profile was chosen to be � D 9 on the basis of
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[35]. For the 3-D model, the velocity boundary condition at the inlet was prescribed with a profile
of order � D 9. The 3-D simulation was run using a mesh containing 1,480,048 linear tetrahedral
elements (261,912 nodes) and a time step of 0.2 ms.

Figure 4 shows the numerical predictions of flow rate, pressure, changes in luminal radius, and
velocity profiles at several sites in the 1-D and 3-D models. Figure 4 also contains a plot of the pres-
sure gradient between the inlet and outlet. The overall agreement between the two formulations is
still reasonably good, particularly during diastole, with average relative errors smaller than 2%. The
largest differences in pressure are seen at the inlet during acceleration, and the largest differences
in flow are observed during peak systolic flow at the midpoint and outlet locations. The velocity
contours at deceleration (t D 0.33 s) are markedly different: although the 1-D solution preserves
the fixed ninth-order velocity profile, the 3-D results show near-wall flow reversal, resulting in a
Womersley-like profile. Furthermore, the axisymmetry of the 3-D profile breaks down in the second
half of the vessel during peak systole (t D 0.15 s). The pressure gradient plot shows larger absolute
differences than in the carotid geometry and a slight phase-lag between the 3-D and 1-D predictions.

3.3. Low flow and larger diameter aorta

To study the impact of Reynolds number and flow inertia, we considered two more cases in addition
to the baseline straight aorta model. In the first case, the flow prescribed at the inlet was reduced

Figure 4. Baseline aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, radius
with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model (solid lines) and
1-D model (dashed lines) with relative error metrics (Section 2.6). Bottom: velocity magnitude in the ref-
erence domain of the 3-D model (colormap). Velocity profiles of the 3-D model (solid lines, axial velocity

component) and the 1-D model (dashed lines) at three locations and two time points.

© 2013 The Authors. International Journal for Numerical Methods
in Biomedical Engineering published by John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. (2013)
DOI: 10.1002/cnm



N. XIAO, J. ALASTRUEY AND C. A. FIGUEROA

Figure 5. Low-flow aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, radius
with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model (solid lines) and

1-D model (dashed lines) with relative error metrics (Section 2.6).

by a factor of 9.54 to match the peak Reynolds number to that of the CCA model (Re D 748).
In the second case, the diameter of the cylindrical domain was increased to 1.5 cm from 1.2 cm,
whereas the flow rate and vessel length remained unchanged (Re D 5713 at peak systole). Figures 5
and 6 show the flow rate, pressure, change in luminal radius, and pressure gradient at several sites
in the 1-D and 3-D models. Although reducing the Reynolds number via decreasing the total flow
did not decrease the error in the inlet pressures during acceleration (Figure 5), increasing the vessel
diameter without altering the total flow (Figure 6) did bring the 3-D and 1-D predictions closer.

3.4. Tapered carotid

We considered a linearly tapered cylinder with the same length as the previous CCA geometry. On
the basis of reference values for the degree of tapering of the left CCA in [56], the diameter was set
to 8mm at the inlet and 4mm at the outlet. AlthoughRT remained unchanged from the non-tapered
CCA model, the resistance R1 (Equation (15)) was recalculated with the values of cd and Ad at the
location of the outlet, giving a value of R1 D 6.8548 �108 Pa s m�3 and R2 D 1.4330 �109 Pa s m�3.
The remaining parameters were unchanged from those given in Table I.

For the 1-D model, the velocity profile was specified with � D 2, and the simulation was carried
out using six elements with a quadrature and polynomial order of 10 and a time step of 0.1 ms. For
the 3-D model, the velocity boundary condition at the inlet was prescribed using a profile of order
� D 2, and the simulation was run using a mesh containing 840,899 linear tetrahedral elements
(153,539 nodes) and a time step of 0.2 ms.

Figure 7 shows the flow rate, pressure, pressure gradient, velocity profiles, and change in luminal
radius at several sites in the 1-D and 3-D models. Slightly larger differences in 3-D/1-D predicted
pressure are observed at the inlet and in the center of the vessel. Compared with the non-tapered
CCA geometry, there is also a significant increase in pressure gradient discrepancy.

3.5. Tapered aorta

We considered a linearly tapered cylinder with length identical to that of the baseline non-tapered
aorta model. On the basis of typical reported aortic dimensions [56], the diameter was set to 3 cm at
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Figure 6. Larger-diameter aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet,
radius with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model (solid

lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6).

the inlet and 2 cm at the outlet. RT remained unchanged from the baseline non-tapered aorta model,
but the resistance R1 was recalculated with the values of cd and Ad at the location of the outlet. We
obtained R1 D 1.8503 � 107 Pa s m�3 and R2 D 1.0492 � 108 Pa s m�3. The remaining parameters
were unchanged from those in Table II.

For the 1-D model, the polynomial order of the velocity profile was chosen to be � D 9, and the
1-D simulation was run using 12 elements with a quadrature and polynomial order of 5 and a time
step of 0.1 ms. For the 3-D model, the velocity boundary condition at the inlet boundary was pre-
scribed using a profile of order � D 9, and the simulation was run using a mesh containing 1,663,772
linear tetrahedral elements (293,667 nodes) and a time step of 0.2 ms.

Figure 8 shows the flow rate, pressure, changes in luminal radius, velocity profile, and pressure
gradient at several sites in the 1-D and 3-D models. Results show larger differences in pressure and
flow waveforms at the midpoint and inlet locations, respectively, compared with those found in the
tapered carotid case. The differences between the velocity contours are also more noticeable, with
the 3-D profile displaying near-wall flow-reversal patterns.

3.6. Aorta with curvatures

We considered two additional aortic models using the same inflow and outflow boundary condi-
tions as the baseline aorta model with the purpose of studying the impact of vessel curvature on
cross-sectional average pressure and velocity. In the first case, curvature was introduced in a single
plane (sagittal) to represent an idealized aortic arch. In the second case, curvatures were introduced
in three planes (sagittal, coronal, and transverse) as described by Yearwood and Chandran [57].
Lengths and diameters were kept unchanged relative to the baseline aorta case. Because the 1-D
model is independent of curvature, the 1-D solution is identical to that obtained in Section 3.2. The
boundary conditions and material parameters were identical to those in the baseline aorta model
(Table II).

Because of the centrifugal loading experienced by the vessel wall in the curved portion of the
3-D geometry, a small value for the external damping coefficient (cs D 300 Pa s m�1) was
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Figure 7. Tapered carotid case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, radius
with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model (solid lines) and
1-D model (dashed lines) with relative error metrics (Section 2.6). Bottom: velocity magnitude in the ref-
erence domain of the 3-D model (colormap). Velocity profiles of the 3-D model (solid lines, axial velocity

component), and the 1-D model (dashed lines) at three locations and two time points.

chosen to reduce nonphysiological oscillatory modes. The external damping smooths the pressure
and flow waveforms predominantly where high frequencies are dominant, with distal waveforms
being smoother than proximal ones. These results are in agreement with the linear analysis of wall
viscoelasticity described in [50]. The simulation of the 3-D model containing the single plane of
curvature was run using a mesh containing 1,691,525 linear tetrahedral elements (297,472 nodes)
and a time step of 0.2 ms. The model containing three planes of curvature was simulated with a
mesh containing 1,688,467 linear tetrahedral elements (297,083 nodes) and a time step of 0.2 ms.

Figures 9 and 10 show the flow rate, pressure, changes in luminal radius, and pressure gradient
for the single-curvature and three-curvature cases, respectively, and compares them with the corre-
sponding 1-D predictions, which are the same as those shown in Figure 4. In-plane and out-of-plane
velocity profiles at three cross sections in the 3-D models illustrate the skewing of the velocity pro-
file toward the outer wall during systole and the presence of backflow along the inner wall during
diastole. Nevertheless, the relative errors in flow, pressure, and pressure gradient are similar to those
observed in the baseline aorta case.

3.7. Aortic bifurcation

Here, we considered an idealized model of the aortic bifurcation, containing a single parent seg-
ment, representing the abdominal aorta, and two branch segments representing the iliac arteries.
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Figure 8. Tapered aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet, radius
with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model (solid lines) and
1-D model (dashed lines) with relative error metrics (Section 2.6). Bottom: velocity magnitude in the ref-
erence domain of the 3-D model (colormap). Velocity profiles of the 3-D model (solid lines, axial velocity

component) and the 1-D model (dashed lines) at three locations and two time points.

The lengths and diameters are listed in Table III. The initial net peripheral resistance and total com-
pliance were calculated from Equations (13) and (17) by using the systolic and diastolic pressures
from [51]. The final values of RT and CT were obtained after three iterations to reach convergence
to the target pressures at the inlet. The peripheral resistanceR1CR2 at the outlet of the iliac arteries
was calculated assuming equal flow distribution.

For the 1-D model, the simulation was run using 12 elements with a quadrature and polyno-
mial order of 5 and a time step of 0.1 ms. The initial area was calculated using Equation (9) to be
A0 D 1.8062 cm2 in the abdominal aorta and A0 D 0.9479 cm2 in the iliac branches. The velocity
profile was chosen to have a polynomial order � D 9. For the 3-D model, the geometry was con-
structed from three cylinders with the same diameters and lengths as in the 1-D network. The angle
between the two iliac branches was set to 47.9 degrees [58]. The velocity boundary condition at the
inlet was prescribed with a profile of order � D 9. The simulation was run using a mesh containing
1,799,117 linear tetrahedral elements (321,651 nodes) and a time step of 0.2 ms.

Figure 11 shows the flow rate, pressure, velocity, and changes in luminal radius at several sites
in the 1-D and 3-D models. The results show excellent agreement between the two models (aver-
age relative errors smaller than 2%), with similar relative errors to the baseline common carotid
artery case.
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Figure 9. Single-curvature aorta case. Top: flow rate and pressure with time at the inlet, midpoint and outlet,
radius with time at the midpoint, and pressure gradient between inlet and outlet in the 3-D model (solid
lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6). Bottom: in-plane (colormap
and arrows, left) velocity and out-of-plane (colormap, right) components of the velocity field in the 3-D
model at three cross sections. Velocities are given in cm/s. The outer and inner walls are labeled as ‘O’ and

‘I’, respectively.

3.8. Full aorta

We considered an idealized geometry representing the aorta and the first generation of main branches
from just above the sinuses to the aortic bifurcation, neglecting the coronary and intercostal vessels.
The curvature and angulation from the sagittal plane in the aortic arch were based on published
measurements from human cadavers [57, 59]. The dimensions and spacing between branch vessels
were based on those reported in [3]. The parameters are summarized in Table IV, and the geometry
is illustrated in Figure 12. The spatially varying elastic moduli (E) were calculated from the pulse
wave velocity, c, given by the empirical relationship [56] c D a2=.2rd/b2 , where c is given in m/s,
rd is the radius at diastolic pressure expressed in mm, a2 D 13.3 and b2 D 0.3. For each vessel
segment, once c was determined, E was calculated using Equation (8) with A D Ad. The spatially
varying wall thickness (h) was chosen to be 10% of rd [55] at the inlet of each segment.
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Figure 10. Multiple-curvature aorta case. Top: flow rate and pressure with time at the inlet, midpoint and
outlet, radius with time at the midpoint, and the pressure gradient between inlet and outlet in the 3-D model
(solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6). Bottom: in-plane (col-
ormap and arrows, left) velocity and out-of-plane (colormap, right) components of the velocity field in the
3-D model at three cross-sections. Velocities are given in cm/s. The outer and inner walls are labeled as ‘O’

and ‘I’, respectively.

The total peripheral resistanceRT D 1.1583 �108 Pa s m�3 was obtained from Equation (13) with
Qin D 6.17 l min�1, Ps D 16.8 kPa, and Pd D 9.5 kPa. At the outlet of each terminal branch, the
resistance R1 CR2 was calculated to yield the flow distribution given in [2] (Table V). Each resis-
tance R1 follows from Equation (15) with cd and rd calculated at the outlet of the terminal branch.
The total compliance CT was calculated from the time constant � D 1.79 s [51] of the exponential
decline in pressure during diastole using Equation (16); CT D �=RT D 1.5453 � 10�8 m3 Pa�1.
The compliance C of each terminal RCR Windkessel model was then calculated as described in
Section 2.5. The final values of RT and CT were obtained after eight iterations to reach convergence
to the target pressures at the outlet of the abdominal aorta.

For the 1-D model, the simulation was run using 46 elements with a quadrature and polynomial
order of 5 in each vessel and a time step of 0.05 ms. The initial areas A0 that yield the diastolic
areas Ad at P D Pd were calculated using Equation (9) (A0 D 4.7203 cm2 at the aortic root). The
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Table III. Normal hemodynamic properties of the human aortic bifurcation.

Property Aorta Iliac

Length, L 8.6 cm 8.5 cm
Radius at diastolic pressure, rd 0.86 cm 0.60 cm
Wall thickness, h 1.032 mm 0.72 mm
Young’s modulus, E 500.0 kPa 700.0 kPa
Mean flow rate, Qin 0.4791 l min�1

Systolic pressure, Ps 16.8 kPa
Diastolic pressure, Pd 9.5 kPa
Windkessel resistance, R1 � 6.8123 � 107 Pa s m�3

Windkessel compliance, C � 3.6664 � 10�10 m3 Pa�1

Windkessel resistance, R2 � 3.1013 � 109 Pa s m�3

The dimensions are based on data given in [3]. The flow rate is taken from [66] and the pres-
sures from [51]. The parameters of the two RCR models were calculated as described in the
text. The resulting wave speed at mean pressure is cm D 6.26 m s�1 in the abdominal aorta and
cm D 7.4 m s�1 in both iliac arteries.

velocity profile was chosen with polynomial order � D 9. For the 3-D model, the external damping
coefficient was assigned a small value (cs D 300 Pa s m�1) to reduce nonphysiological oscillations.
The simulation was run using a mesh containing 2,554,521 linear tetrahedral elements (475,000
nodes) and a time-step of 0.2 ms. The velocity boundary condition at the inlet was prescribed with
a profile of order � D 9.

Figure 13 shows flow rate and pressure at a number of representative locations in the 1-D and
3-D models. The differences in the pressure and flow predictions occur predominantly in peak sys-
tole, and these discrepancies are greater in distal sites than in the proximal aortic arch branches.
Additionally, the results from the 3-D model exhibit fewer high-frequency features in the flow and
pressure waveforms than in the 1-D model as a consequence of external damping.

4. DISCUSSION

4.1. Carotid versus aortic geometry: combined impact of Reynolds number, wall strain and
velocity profile

In the baseline carotid case, the assumptions of the 1-D formulation, that is, predominantly uni-
directional flow, hold well. The relative errors in flow and pressure were small between the 1-D
and 3-D carotid models, with "P ,avg and "Q,avg generally less than 0.3%, as shown in Figure 3. In
the baseline aorta case, however, the differences between the 1-D and 3-D models were greater
(Figure 4), particularly at the inlet, where the 3-D model shows a more pronounced systolic ‘shoul-
der’ (at t � 0.1 s) in the pressure waveform compared with the 1-D model. Furthermore, the
pressure gradient between the inlet and outlet is greater in the 3-D model during peak systole and
also exhibits a phase lag between the 1-D and 3-D models, that is, the time at which the pres-
sure gradient from the 3-D model reverses direction during systole is delayed compared with the
1-D model.

Inertial forces play a larger role in the aorta model compared with the carotid model, with the
peak Reynolds number in the aorta model being nearly an order of magnitude greater than in the
carotid model (Re D 7, 140 vs. Re D 748). To investigate the impact of the Reynolds number in
the pressure waveforms, we scaled down, by a factor of 9.54, the aorta model inflow to match the
peak Reynolds number of the baseline carotid model. We observed that the average relative error in
the pressure waveforms at the midpoint and outlet locations decreased, but the relative errors at the
shoulder of the inlet pressure waveform and the phase lag in the pressure gradient were not reduced
(compare Figures 4 and 5).
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Figure 11. Aortic bifurcation case. Top: flow rate, pressure, change in radius with time at several locations,
and pressure gradient between inlet and outlet in the 3-D model (solid lines) and 1-D model (dashed lines)
with relative error metrics (Section 2.6). Bottom: velocity magnitude in the reference domain of the 3-D
model (colormap). Velocity profiles of the 3-D model (solid lines, axial velocity component) and the 1-D

model (dashed lines) at three locations and two time points.

To investigate the origin of these discrepancies further, we must reflect on the different treatments
that our specific 1-D and 3-D implementations make regarding geometric nonlinearities. Although
both formulations consider equivalent linear material laws, the 3-D formulation assumes a linearized
kinematics behavior for the vessel wall (i.e., a fixed computational grid is maintained through-
out the simulation), whereas the 1-D formulation accounts for changes in cross-sectional area
(Equation (7)). Therefore, the fixed-grid assumption of the 3-D formulation introduces errors in
the velocity profile that are proportional in magnitude to the vessel wall strain. The aorta experi-
ences both greater flow velocities and larger wall strains ( D�rmax=rd) compared with the carotid
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Table IV. Parameters of the full-aorta model.

Arterial Length rin! rout cin! cout R1 R2 C

segment (cm) (mm) (m/s) (107 Pa s m�3)(108 Pa s m�3)(10�10 m3 Pa�1)

1. Ao I 7.0357 15.2! 13.9 4.77! 4.91 — — —
2. Ao II 0.8 13.9! 13.7 4.91! 4.93 — — —
3. Ao III 0.9 13.7! 13.5 4.93! 4.94 — — —
4. Ao IV 6.4737 13.5! 12.3 4.94! 5.09 — — —
5. Ao V 15.2 12.3! 9.9 5.09! 5.43 — — —
6. Ao VI 1.8 9.9! 9.7 5.43! 5.46 — — —
7. Ao VII 0.7 9.7! 9.62 5.46! 5.48 — — —
8. Ao VIII 0.7 9.62! 9.55 5.48! 5.49 — — —
9. Ao IX 4.3 9.55! 9.07 5.49! 5.57 — — —
10. Ao X 4.3 9.07! 8.6 5.57! 5.66 — — —
11. Brachiocephalic 3.4 6.35! 6.35 6.20! 6.20 5.1918 10.6080 8.6974
12. L com. carotid 3.4 3.6! 3.6 7.36! 7.36 19.1515 52.2129 1.7670
13. L subclavian 3.4 4.8! 4.8 6.75! 6.75 9.8820 13.0183 7.0871
14. Celiac 3.2 4.45! 4.45 6.90! 6.90 11.7617 7.5726 12.1836
15. Sup. mesenteric 6 3.75! 3.75 7.27! 7.27 17.4352 5.5097 16.7453
16. R renal 3.2 2.8! 2.8 7.93! 7.93 34.1378 5.3949 17.1017
17. L renal 3.2 2.8! 2.8 7.93! 7.93 34.1378 5.3949 17.1017
18. Inf. mesenteric 5 2.0! 2.0 8.77! 8.77 74.0167 46.2252 1.9959
19. R com. iliac 8.5 6.0! 6.0 6.31! 6.31 5.9149 10.1737 9.0686
20. L com. iliac 8.5 6.0! 6.0 6.31! 6.31 5.9149 10.1737 9.0686

rin ! rout: diastolic cross-sectional radii at the inlet and outlet of the arterial segment. cin ! cout: wave speed at
diastolic pressure at the inlet and outlet of the arterial segment.

setting (i.e., aortic D 12.5% versus carotid D 6%). These two phenomena are responsible for the
larger discrepancies between the 1-D and 3-D results during systole in the baseline aorta compared
with the carotid example.

This idea is supported by the larger diameter aorta model. Despite being a more compliant model
than the baseline aorta (because of a larger cross-sectional area), it experiences smaller wall strains.
The centerline velocities are also reduced compared with the baseline aorta model. We therefore
have a situation where both the Reynolds number and the wall strains are reduced. This ultimately
results in a smaller relative error in the shoulder of the inlet pressure waveform (Figure 6) compared
with the baseline aorta model (Figure 4).

4.2. Impact of tapering

The presence of tapering introduces errors between the 1-D and 3-D models in the systolic pressure
(but not during the diastolic decay) in both carotid and aortic models (Figures 7 and 8). The 3-D
model more accurately captures the spatial changes in the velocity profile and therefore the viscous
friction losses in the tapered tube. With tapering, we observed greater errors between the 1-D and
3-D model in the pressure gradient between the inlet and outlet, as the 3-D model predicts that a
greater pressure gradient is needed to drive flow during peak systole. In the tapered aorta case, iner-
tial and frictional effects are naturally better captured in the 3-D model, resulting in greater errors
in the pressure waveform than in the tapered carotid case.

4.3. Impact of curvature

The velocity field in the curved 3-D domain is complex and not axisymmetric (Figures 9 and 10).
During systole, the region of higher velocity is located near the outer wall of the arch, and during
deceleration, significant backflow occurs near the inner wall. As such, the 3-D model is inherently
more accurate in capturing the inertial and frictional forces in the curved domain, which leads to
differences in the integrated flow and pressure quantities compared with the 1-D model. Hence, we
observed that the addition of a single plane of curvature slightly increased the relative errors in the
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Figure 12. Idealized full aorta geometry and vessel wall material properties. (a): Coronal (left) and sagittal
(right) views with lengths and diameters. (b): Close-up view of the arch and branches with lengths and diam-
eters and the primary radius of curvature. (c): Close-up view of the arch showing the degree of curvature in
the ascending arch (left) and transverse view of the arch (right), showing the degree of transverse curvature
and the degree of angulation from the sagittal plane. (d): The spatial distributions of wall thickness (h) and

elastic modulus (E).

pressure and flow waveforms (Figure 9) compared with the uncurved baseline aorta case. In particu-
lar, the error in the systolic shoulder of the inlet pressure waveform was notably increased (compare
Figures 4 and 9).

External damping was necessary in the 3-D model to produce flow and pressure waves without
spurious oscillations. This damping was not included in the 1-D formulation and contributes to
some of the discrepancies observed. The added dissipation attenuated the high-frequency features
of the flow and pressure waveforms in the 3-D model, whereas these features are more prominent
in the 1-D model, that is, the dicrotic notch and the early-diastolic flow reversal phase. We further
observed that the addition of the second and third planes of curvature to the 3-D model did not
further introduce significant differences between the 3-D and 1-D predictions (Figure 10) compared
with the single curvature case (Figure 9). In Section 4.5, we investigate the relationship between
external damping and curvature in the 3-D setting.

4.4. Bifurcation

The 1-D and 3-D models are in good agreement in the aortic bifurcation case. We observed small rel-
ative errors (average relative errors smaller than 2%) between the 1-D and 3-D models (Figure 11),
which was expected considering the lower flow rate in comparison with the aorta case. Further-
more, changing the bifurcation angle from 47.9 to 27.5 degrees resulted in a negligible change in
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Table V. Distribution of the cardiac output among each terminal
vessel in the full aorta model.

Terminal vessel % cardiac output

11. Brachiocephalic 10.41
12. L com. carotid 2.14
13. L subclavian 8.27
14. Celiac 13.24
15. Sup. mesenteric 15.97
16. R renal 13.15
17. L renal 13.15
18. Inf. mesenteric 2.16
19. R com. iliac 10.76
20. L com. iliac 10.76

the relative errors. A similar good agreement was obtained with a geometric model of the abdominal
aorta featuring two 90-degree branches representing the renal arteries. These results suggest that the
effect of energy losses at the aortic bifurcation on the pressure waveform is minor, as was previously
observed using in-vitro data [22].

4.5. Full aorta comparison

The full aorta model is essentially a combination of all the previously considered geometric features,
including tapering, curvature, branching, and a variety of vessel diameters. As such, we expected
to observe larger differences in the prediction of flow and pressure waveforms between the two
theories. In general, the largest differences occur in systole, whereas the diastolic predictions are
much closer. We can explain the closer agreement between models during diastole using a 0-D
Windkessel model for pressure. Starting with the 1-D formulation, a space-independent Windkessel
pressure, pw.t/, can be derived by neglecting nonlinearities, flow inertia and viscous dissipation,
and assuming that wall compliance and fluid peripheral resistance are the dominant effects [52].
Under these premises, pw.t/ is given by
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where Qin.t/ is the flow waveform at the inlet of the ascending aorta, pw.T0/ is the pressure pw at
t D T0, T0 is the time corresponding to the beginning of systole (T0 D 0 in Figure 14), M � 1 < N
is the number of terminal branches, and qjout.t/ is the outflow in the terminal Segment j . The net
peripheral resistance (RT) is given by Equation (14), and the total arterial compliance (CT) is given
by Equation (18). The parameters of the resistor-capacitor-resistor Windkessel models are R1, C ,
R2, and Pout (Figure 1). The validity of Equation (28) is also supported by in vivo studies, which
show that the aortic pressure waveform is approximately uniform in space during approximately the
last two thirds of diastole [60, 61].

Figure 14 (left) illustrates that the agreement between 3-D, 1-D, and analytical pressures improves
as diastole progresses, indicating that the physics of flow are fundamentally linear and inertia-
free during this phase of the cardiac cycle. Conversely, systolic flow is fundamentally nonlinear
and advection/inertia-dominated, and therefore, larger differences between the two methods were
observed.

The discrepancies observed in systole are partially due to the different treatment of the arterial
wall mechanics in the two formulations: although both theories consider equivalent purely elastic
material laws, the 3-D case requires a viscous dissipation term provided by the external tissue sup-
port model. Without this dissipation, the 3-D flow and pressure waveforms contain spurious, large
amplitude high-frequency oscillations resulting from unconstrained rigid-body motion modes that
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Figure 13. Full aorta case. Flow rate (left) and pressure (right) with time at eight outlets in the 3-D model
(solid lines) and 1-D model (dashed lines) with relative error metrics (Section 2.6).

are generated in non-axisymmetric flows. This viscous damping, although necessary in the 3-D set-
ting, attenuated the sharper features of the flow and pressure waveforms, most noticeably in the
dicrotic notch and early-diastole flow reversal phases, compared with the predictions seen in the
1-D setting (Figure 13).

It is worth noting that external tissue support can also be included in 1-D modeling, as recently
demonstrated by Formaggia et al. [33]. That work focuses on the importance of including external
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Figure 14. Left: Analytical prediction of pressure (dotted lines) shows good agreement with 1-D and 3-D
models during diastole. Right: Pressure and flow rate at the midpoint of the abdominal aorta for the curved
3-D aorta tree model with external damping (red), the straight 3-D aorta model with external damping
(dashed blue), the straight 3-D aorta model without external damping (dashed green), and the 1-D model
(dashed black). The level of external damping cs D 300 Pa s m�1 and is identical for all the 3-D models.

The waveforms for the straight 3-D model with and without damping are essentially identical.

tissue support in the 1-D formulation to reduce reflections at the 1-D/3-D interfaces. Furthermore,
although the external tissue support will never be engaged in a 1-D setting to limit spurious wall
motion as in the 3-D model, its presence will affect the deformation of the arterial wall because
of the additional stiffness. Figure 14 (right) illustrates the impact of external tissue damping by
introducing a new model consisting of a modified ‘straightened’ full aorta geometry. We compared
infrarenal flow and pressure waveforms in four different cases: (i) 3-D formulation in original full
aorta geometry considering tissue damping; (ii) 3-D formulation in straightened full aorta geometry
considering tissue damping; (iii) 3-D formulation in straightened full aorta geometry without tissue
damping; and (iv) 1-D formulation. The results in the straightened 3-D aorta models (dashed blue
and green lines) demonstrated sharper features than those observed in the 3-D curved aorta model
(solid red lines) and, notwithstanding the larger pulse pressures in the 3-D model, resembled more
closely the results from the 1-D model (dashed black lines). Furthermore, the exclusion of exter-
nal tissue damping (green dashed lines) resulted in almost no difference in the pressure and flow
waveforms in the straightened model. This behavior suggests that eliminating the aortic curvature
reduced the rigid-body modes in the thoracic region and, even though the external viscous damping
is still present, it is engaged to a lesser degree than in the original curved aorta model.

4.6. Limitations

It is important to note that the comparisons presented in this paper were between two particular
implementations of 1-D and 3-D theories with equivalent boundary conditions and material laws.
However, a one-to-one comparison of hemodynamics between the two theories is not always pos-
sible. A few examples of fundamental modeling differences that are not easy to overcome are
the inability to account for secondary flows and the assumption of a fixed velocity profile in the
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1-D formulation; the linearized kinematics approach and the need for outflow boundary condition
stabilization and external tissue support in the 3-D formulations.

To facilitate an improved comparison, the 1-D formulation could incorporate space-varying and
time-varying velocity profiles [7,56,62–64]. Furthermore, external damping modeled using a visco-
elastic tube law [9] and wall inertia [5] could be included in the 1-D model as well. On the other
hand, the 3-D formulation would need to incorporate moving domains/meshes [11, 16] to enable a
more consistent description of cross-sectional area changes between the two methods.

4.7. Implications of fundamental modeling differences between 3-D and 1-D theories

An inconsistency between our specific 1-D and 3-D implementations was introduced by assign-
ing zero velocity boundary conditions at the inlet and outlet rings in the 3-D model, effectively
clamping the vessels at those locations. Consequently, the conduit compliance (Cc) of the vessels
in the 3-D models is slightly reduced relative to the 1-D models; this becomes more significant
as the length of the vessel domain decreases. The clamping has a negligible local effect on pres-
sure and flow in the 3-D domain, even though the wall displacements near the inlets and outlets
are reduced. A better treatment of the arterial wall boundary conditions in the 3-D formulation
can be performed using external tissue support formulations [39] and time-resolved medical-image
data to inform both the radial and longitudinal components of the vessel wall motion. Lastly, an
important inconsistency between our two modeling approaches is introduced by the need for exter-
nal damping in the 3-D model in complex and curved geometries, such as the curved aorta and
full aorta.

5. CONCLUSIONS

In this article, we have compared 1-D and 3-D hemodynamics in a series of idealized compliant
arterial models of the carotid artery, thoracic aorta, aortic bifurcation, and full aorta. The 1-D and
3-D formulations share common inflow and outflow boundary conditions and have equivalent mate-
rial laws. We also presented an iterative algorithm to determine the parameters of each outflow
boundary condition module to achieve desired systolic and diastolic pressures at a particular vessel.
We have demonstrated good agreement between 1-D and 3-D predictions, especially during diastole.
The larger differences in systole can be explained by the following: (i) the inability to account for
secondary flow features, vessel curvature, and a prescribed velocity profile shape in the 1-D model
and (ii) the linearized treatment of the kinematics of the vessel wall and the external tissue support
(which introduces viscous damping) in the 3-D model.

Our 1-D/3-D framework demonstrates the use of a 1-D model to determine boundary condition
and material parameters that are subsequently fed to a corresponding 3-D model. Indeed, the rela-
tively good agreement between the numerical predictions in the full aorta setting suggests that the
1-D model is a reasonable representation of the 3-D system in terms of the global behavior of the
spatially averaged pressure and flow waveforms. It follows that the 1-D model can be used to per-
form tasks such as: (i) estimation of the parameters of outflow boundary conditions to reproduce
clinical measurements and (ii) sensitivity studies under different hemodynamic conditions to gain
an understanding of the behavior of the arterial system. This overlapping 1-D/3-D approach will
accelerate the selection of model parameters for 3-D subject-specific models.
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A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models
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We present a systematic comparison of computational hemodynamics in a one-dimensional and
a three-dimensional formulation with deformable vessel walls. The formulations share identical
inflow and outflow boundary conditions and have compatible material laws. The results show good
agreement between the two formulations, especially during the diastolic phase of the cycle.




