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Abstract

In the mammalian heart there are four heart valves (HV), of which the largest is the mitral valve (MV).

Key components in the circulatory system, correct HV function is vital to cardiovascular health. A teth-

ered and asymmetric structure, the MV regulates unidirectional flow between the left atrium and left

ventricle. MV function is divided between systole/closure, where the MV is required to sustain a pressure

load ∼120 mmHg whilst minimising flow reversal, and diastole/opening in which the MV is required to

rapidly transition from closed to open in order to maximise the transport of blood. Directly affecting the

heart, dysfunction of the MV can affect either opening or closing through stenoses or prolapse/regurgi-

tation respectively.

Complementing experimental techniques, numerical simulation of the MV offers additional insights

into MV function as unmeasurable variables such as the stresses can be approximated. Due to the im-

mersed nature of the HVs, numerical simulation of the MV requires an approach that is able to model

both the large deformation of the MV and non–uniform haemodynamics pressure load resulting from

the blood/HV contact. In this work the finite element solver LS–DYNA has been used as it addresses both

issues. Using this framework, anatomically sized MV models have been used to characterise the current

methodology of reported HV simulations, showing that the fluid–structure interaction (FSI) modelling

of the blood/HV contact is essential in the simulation of MV dynamics. Application of this FSI method

has been applied to surgical repair technique of the MV known as the edge–to–edge repair, showing that

more invasive procedures result in greater stress concentrations but impaired the flow rates. Further

advances in this model have been used to examine growth and remodelling effect of the MV tissue in

both normal and dysfunctional states.

Abstract word count: 299
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Thesis Outline

In this work several aspects relating to the numerical modelling of the mitral valve have been addressed.

Divided into five main chapters, please note that each chapter is accompanied by its own bibliography

and that the reference numbering is unique to each chapter. Beginning with Chapter 1, a brief review

of information relevant to the multiple aspects related to the modelling of the mitral valve has been

summarised. Within this work it has been chosen to focus upon three key issues related to the mitral

valve, simulation of valvular dynamics, surgical repair techniques and valve growth and remodelling,

as detailed in the following text and in the illustration below. In Chapter 2 an in–depth review of the

methodologies used to model these three aspects is summarised in greater detail.

The foundation of valvular modelling is the method used to describe and model valve function, in

Chapter 3 the current techniques available for mitral valve modelling have been examined. Previously

published models of the mitral valve have either been described using the a structural–only approach of

simulating the valve–only, or a fluid–structure interaction approach of simulating the valve immersed

within blood. In the structural–only approach the effect of the haemodynamic load is approximated

as a uniformly distributed pressure load, the effect of which has not been examined. By comparing a

structural–only model directly against a fluid–structure interaction model, the effect of this approxima-

tion has been examined in several different scenarios.

Key to restoring function in diseased states, simulation of the correction of a valvular dysfunction

has been addressed in Chapter 4 focussing upon the valvular repair technique known as the edge–to–

edge repair. Previously reported models of this approach have been fluid or structural based models,

as such no fluid–structure interaction models of this procedure exist. Using the simulation techniques

described in Chapter 3, here the methodology of these approaches have been characterised by compar-

ison with a fluid–structure interaction method. Furthermore a dysfunctional model the edge–to–edge

repair has been evaluated with and without annular support (annuloplasty) reflective of traditional and

percutaneous approaches currently available. Using a fluid–structure interaction model these two op-

tions have been characterised and compared in terms of the induced stresses and subsequent flow rates

following the simulated procedure.

Key to valve function in both normal and dysfunctional states, in Chapter 5 the simulation of growth

and remodelling of the mitral valve has been addressed. Maintained homeostatically in normal states,

the biomechanical properties of the valve microstructure are vital to correct function of the valve in both

opening and closing phases. However this regulation is disrupted in dysfunctional states, resulting in

a degradation of the biomechanical properties. Abnormal forces have been shown experimentally to

induce dysfunctional adaptation, however the role of the mechanical environment in this tissue degra-

dation is not well understood. In order to better understand the potential mechanisms through which

valvular tissue adapts a stress–based approach to tissue adaptation has been examined in both normal

and dysfunctional states. Separately examining fibre reorientation and leaflet thickness, the resulting

changes in the tissue microstructure and the associated changes in the stresses and strains have been

examined.
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Chapter 1

Literature Review

Contained within this chapter is a brief review of the multiple aspects related to the modelling of the mi-

tral valve. This has been divided into the clinical background behind heart valve disease (Section 1.1),

valvular anatomy and function in normal and pathological states (Sections 1.2 and 1.3), the biomechan-

ical properties of the valve (Section 1.4) and numerical modelling of valve function (Section 1.5).

1.1 Clinical background

The human heart contains four heart valves: the mitral valve, aortic valve, tricuspid valve and pul-

monary valve. Classified by their anatomical position and function in the cardiac cycle these valves

can be divided between the atrioventricular valves (mitral and triscupid) and the semilunar valves (aor-

tic and pulmonary), which respectively separate the left/right atria from the left/right ventricles and

the left/right ventricle and the aorta/pulmonary artery. Under normal conditions these valves regulate

unidirectional flow of blood through the heart, enabling the generation of pressure required to pump

blood around the cardiovascular system [1]. The functional requirement of the valves are divided be-

tween its two states, open and closed. When closed the valves are required to sustain pressure loads

ranging from 30 mmHg up to 150 mmHg [2], whilst minimising flow reversal. When open the valves

must rapidly transition from closed to open, minimising the resistance to fluid motion and maximising

the transport of blood. Dysfunctional changes in either open or closed phases directly affect the func-

tion of the heart by disrupting filling or ejection. Classification of valve dysfunction is determined from

abnormal leaflet displacement during closure, the presence of abnormal retrograde flow during closure

or abnormal narrowing of the valvular orifice that are respectively referred to as prolapsed, regurgitant

or stenotic states.

Although the occurrence of heart valve disease is less frequent than that of coronary disease, heart

failure or hypertension, heart valve disease is a potential causes of death in predominately older patient

populations. A recent European wide survey focussing on heart valve disease reports that the mean age

of heart valve disease patients as 61±14 years [3]. Although the mean age is relatively high, younger

populations are also affected in cases of congenital malformations such as the bicuspid aortic valve

for which the expected incidence is reported to range from 0.4 % to 2.45 % [4]. In patients with a sin-

gular dysfunction, stenosis of the aortic valve is the most frequent (43.1%), followed by regurgitation

of the mitral valve (31.5%), regurgitation of the aortic valve (13.3%) and finally stenosis of the mitral

valve (12.1%). The origins of these dysfunctions have a variety of different causes, with the predominant

causes rheumatic and degenerative (Table 1.1).

If the dysfunction is severe enough to impair the function of the cardiovascular system, it is possible

to perform a surgical correction in order to restore normal function. Depending upon the severity of

dysfunction, the existing valve anatomy is either repaired to an improved state of functionality or the
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Table 1.1: Etiology (or origin) of single native left–heart valvular diseases, values after Iung et al. [3]. Labels:
AO – aortic stenosis, AR – aortic regurgitation, MS – mitral stenosis and MR – mitral regurgitation.

Origin AO [%] AR [%] MS [%] MR[%]
Degenerative 81.9 50.3 12.5 61.3

Rheumatic 11.2 15.2 85.4 14.2
Endocarditis 0.8 7.5 0.6 3.5

Inflammatory 0.1 4.1 0.0 0.8
Congenital 5.4 15.2 0.6 4.8
Ischaemic 0.0 0.0 0.0 7.3

Other 0.6 7.7 0.9 8.1

valve is replaced with an artificial substitute. In cases of mitral regurgitation, the majority of cases either

undergo surgical repairs (46.5%) or mechanical valve replacement (43.2%), with the remainder receiving

a biological (10.3%) valve replacement [3]. The converse is reported in cases of mitral stenosis, with the

majority of patients receiving a mechanical valve replacement (58.0%) and the remainder undergoing

percutaneous balloon commissurotomy (33.9%), biological valve replacement (4.5%) or valvular repair

(3.6%) [3]. The choice of repair or replacement is dependent on several key factors and can be affected

by advanced age, infective endocarditis, patient suitability for surgical procedures, extensive calcifica-

tions of the valve and even the centre of treatment [5, 6]. The large variety of factors is reflected in the

high number of operations performed without meeting pre–defined guidelines (17.5%) and conversely

the number of operations not performed even though these guidelines are met (16.5%) [3]. Currently

the number of heart valve operations performed annually is reported as approximately 275,000 world-

wide with approximately 9,000 occurring within the United Kingdom, figures indicate that this is a trend

which continues to increase [7, 8].

1.2 Valve anatomy

The focus of this work is the mitral valve, a title which has been attributed to Andreas Vesalius who noted

the resemblance of the valve in its closed configuration to that of a bishop’s mitre [9]. Located between

the left atrium and left ventricle, the mitral valve is the largest of the four heart valves and operates

in conjunction with the aortic valve to regulate the pumping of oxygenated blood into the circulatory

system through the left side of the heart. The anatomy of the valve consists of four different components,

the annulus, the leaflets, the chordae tendineae and the papillary muscles. The antomical details of

these components are described in greater detail in the following sections. How these subcomponents

all operate in synergy to ensure correct valvular function is covered in detail in Section 1.3.

1.2.1 Annulus

The mitral valve is connected to the structure of the heart through a discontinuous ring of tissue known

as the annulus fibrosus, a fibrous cord–like structure that defines the perimeter of the valvular orifice

and the base of the valve. Located adjacent to the aortic valve, the mitral annulus shares a fibrous con-

tinuity with the left coronary and half of the non–coronary cusps of the aortic annulus (Figure 1.1). This

continuous section defines the anterior portion of the mitral annulus, the limits of which are referred

to as the left and right fibrous trigones. Although considered to be a continuous structure, histology of

the annulus indicate that its fibrous structure is not fully continuous in neither normal or dysfunctional

states [10]. Measurement of the total length and extent of the annulus have been documented in both

human and porcine valves by Kunzelman et al. [11], the results of which are summarised in Appendix

A.1.
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(a) Volume rendering image of the mitral annulus (b) Mitral and aortic annuli 3D echocardiography visual-
istion

Figure 1.1: (a) 3D echocardiographic volume rendering of the mitral and aortic annuli as viewed form the
left atrium. (b) 3D visualisation of the mitral and aortic annuli superimposed onto an echocardiographic
image of the mitral and aortic annuli. Note that the mitral annulus is shaped like a “saddle”, or hyperbolic
paraboloid, the peak of which lies on the anterior side of the annulus adjacent to the mitral/aortic annular
continuity. Images after Veronesi et al. [12].

1.2.2 Leaflets

The leaflets of the mitral valve are formed from a continuous band of tissue which extends outward from

the mitral annulus and into the left ventricle cavity. Based on its geometric form and its anatomical con-

nection to the annulus, the tissue of the leaflets can be divided into the following regions: anterior,

posterior/mural and commissural (Figure 1.2). The anterior region has a trapezoidal/semicircular pro-

file and is typically formed of a single cusp. Connected to the mitral annulus on the anterior side of

the heart, this cusp occupies approximately a third of the annular circumference [11]. Separated by the

commissural cusps and positioned opposite the anterior cusp are the posterior/mural cusps. Although

narrower than the anterior cusp with a more scalloped profile, the posterior/mural cusps are similar

in area to the opposing anterior cusp [13]. Reported measurements of the key leaflet dimensions are

summarised in Appendix A.2.

The posterior leaflet is typically described as being formed by three cusps: P1, P2 and P3 (Figure 1.3).

Similarly the segments of the anterior leaflet that oppose the P1, P2 and P3 cusps are labelled A1, A2 and

A3 respectively. Variation in the exact number of these anterior and posterior cusps exists, with the

average number of anterior and posterior scallops reported as 1.2±0.4 and 3.0±1.0 respectively [14].

Divisions in the posterior cusp were found to occur in the standard P1/P2 position with a frequency of

66% and in the P2/P3 position with a value of 71% [14], although extra divisions were found to occur up

to 32 % in the P2 (Table 1.2). However this variation in the number of cusp divisions is limited to the

posterior cusp, as the anterior cusp exhibits little variation (Table 1.2),

During closure the anterior and posterior leaflets coapt together to form a haemodynamic seal (Fig-

ure 1.3). Coapting on their atrial facing surfaces, the two anterior and posterior cusps contact each other

along an area of tissue known as the zone of apposition (or rough zone) which extends 6–8 mm from the

edge/free margin of the valve leaflets. Non–uniform in tissue thickness, this region is characterised as

thicker and rougher than the rest of the valvular tissue [13].

21



1.2. Valve anatomy Chapter 1. Literature Review

Figure 1.2: Backlit image of a cut human mitral valve displaying the valvular profile of the anterior cusp
(AoL) and the posterior/mural cusps (M1,M2,M3) of the valve leaflets. Also labelled here are the inferior
commissure (IC) and superior commissure (SC) regions and the inferior and superior papillary muscles (IPM
and SPM respectively). Image and labels after Muresian [13].

A2

A1 A3

P1

C
C

P2

P3

Figure 1.3: Diagrammatic representation of the mitral valve at closure. The anterior leaflet folded across the
valvular orifice and the posterior and commissural scallops fold into the leaflet to form a tight seal.

Table 1.2: Extra divisions in the anterior and posterior cusps. Data after Quill et al. [14]

Anterior cusp Occurrence [%] Posterior cusp Occurrence [%]
A1 5 P1 13
A2 8 P2 32
A3 13 P3 21

1.2.3 Chordae Tendineae

The chordae tendineae are thin chord–like structures that support the valve during closure and prevent

the inversion of the valve into the atrium (Figure 1.4). Classified by the point of attachment to the valve

and its dimensional size, the chordae can be subdivided into a variety of different classes. Earlier authors

[15, 16] have classified the chordae using the terminology: first, second and third order. However more

recent authors [13] have used a more functional terminology: marginal, rough zone, strut (sustain) and

basal chordae (Table 1.3). It is this terminology which has been used throughout this work

The marginal chordae are the thinnest chordae and are found attached to the leaflet at the free mar-
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gin. Attached below the free margin are the rough zone chordae, intermixed with the marginal chordae

these structures support the position of the zone of apposition/rough zone during closure of the valve

(see Section 1.2.2). Separation of the rough zone chordae from the marginal chordae is complex due

to the similarity in attachment point and dimensional size. Supporting the main leaflet body and the

leaflet base are the strut and basal chordae respectively (Figure1.5) [17], thicker than the marginal chor-

dae these structures allow the valve to bear the haemodynamic load imparted during closure Reported

measurement of the length and thickness of the different chordal classes have been summarised in Ap-

pendix A.3.

Table 1.3: Current and previous terminology used to classify the different classes of the chordae tendineae,
including the point of attachment to the valve structure and the role in valve function.

Recent terminology
[13]

Previous terminology
[16]

Leaflet attachment Function

Marginal First order Free margin Leaflet coaptation
Rough zone Second order Rough zone Leaflet geometry

Strut/sustain Third order Main leaflet body Leaflet geometry
Basal Third order Leaflet base Annular

reinforcement

Figure 1.4: Marginal, rough zone, strut and basal chordae tendineae of the anterior and posterior/mural
leaflets. Inserting into the atrial side of the leaflets, the chordae connect the valve to the papillary muscles.
Image after Muresian [13]

1.2.4 Papillary muscles

The chordae connect to the ventricular wall via a set of muscular fascicles referred to as the papillary

muscles (Figure 1.4). Protruding into the ventricular chamber, these fascicles are classified by their

anatomical location and are grouped together as the anterolateral and posteriormedial papillary mus-

cles. Traditionally considered as muscular extensions of the ventricular wall, X–ray imaging by Axel [18]

has shown that the papillary muscles do not connect to the muscular aspect of the ventricular wall. In-

stead, the base of the papillary muscles connect to an intermediate layer that form part of the muscular

projections into the ventricle known as the trabeculae carneae.

Anatomical measurements of the average distance of the papillary muscle tip to the valve complex

have been measured in excised human hearts by Sakai et al. [19]. These measurements indicate that the
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PS1 PS2
PMB2

AS2

AB2AB1

AS1

PMB1

Figure 1.5: Location of the strut (#) and basal chordae ( ) on the anterior and posterior ventricular sur-
faces. Labels: AS – anterior strut chordae, AB – anterior basal chordae, PS – posterior strut chordae and PB –
posterior basal chordae. Data after Degandt et al. [17].

average distance between each papillary tip and the corresponding annular segment (anterolateral/-

posteriormedial) are equal. The key points of these measurements have been summarised in Appendix

A.4.

1.3 Valve function

The mitral valve has two key functions: (1) maintenance of a haemodynamic seal during ventricular

ejection (systole) whilst minimising retrograde flow and (2) ensuring rapid ventricular filling (diastole)

by minimising flow resistance in the transition between closed to open configurations. The ability of

the valve to function optimally depends upon several factors such as the haemodynamic load imparted

from the flow of blood, the biomechanical properties of the valvular tissue and the functional anatomy

of the left heart. In dysfunctional states one or more of these factors are affected, resulting in suboptimal

filling or ejection. These dysfunctions can be broadly classified into states which affect the passage of

blood through the valve (stenosis) or those that result in abnormal deformations (prolapse) and associ-

ated retrograde flow during closure (regurgitation). In this section the normal and abnormal function

of each subcomponent and the resulting valvular dysfunction (stenosis/prolapse/regurgitation) are re-

viewed.

1.3.1 Blood flow

Opening and closing of the valve is a predominately passive event, in that these events occur in response

to the haemodynamic loads generated by the contraction and relaxation of the heart throughout the

cardiac cycle rather than active valvular activity. Measurement of the haemodynamic function of the

heart is the most accessible variable clinically and for this reason it has traditionally been matched to

valve function through parameters such as the effective orifice area.

Normal states

In a normal state the pressure gradient across the valvular orifice is negative from ventricle to atrium

during diastole, which results in the flow of oxygenated blood from the left atrium into the left ventricle

(Figure 1.6). At the end of diastole the pressure gradient over the valve becomes positive as the ventricle

contracts and the ventricular pressure exceeds the atrial pressure, the blood flow is reversed and the

valve is closed.

24



1.3. Valve function Chapter 1. Literature Review

Blood flow from the atrium into the ventricle during diastole consists of two pulses, with the first

larger than the second [20] (Figure 1.7). Generated in response to the change in pressure between systole

and diastole, the peak of flow occurs at the start of diastole and is referred to as the E–wave. Towards

the end of diastole the atrium contracts, generating a smaller secondary filling motion referred to as the

A–wave. Under normal conditions the fluid velocities during diastole ranges from 0.5 to 0.8 m s−1 [2].

The rapid opening of the mitral valve during diastole results in the generation of a fluid jet as blood

passes through the mitral orifice into the ventricle. In vivo imaging has shown that the mixing of the fluid

jet with the blood within the ventricle generates a pair of large and small asymmetric vortices/eddies in

the ventricle [21] (Figure 1.8). Further mixing of the fluid is generated through interactions of the blood

with the chordae tendineae and the fascicles of the papillary muscles. The presence of these vortices are

considered beneficial to the closure of the valve, as the vortex motion is thought to assist the closure of

the valve leaflets [22].
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Figure 1.6: Illustration showing the change in left ventricular pressure, left atrial pressure, left ventricular
blood volume and the electrocardiography (ECG) activity over a cardiac cycle. Image modified after Levick
[1]. Pressure plot labels: A – A wave, C – C wave, X – X descent, V – V wave and Y – Y descent. Blood volume
labels: RE – rapid ejection, SE – slow ejection, RF – rapid filling, SF – slow filling, EDV – end diastolic volume,
ESV – end systolic volume and SV – stroke volume. ECG labels: – P – P wave, Q/R/S – QRS complex and T – T
wave.
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Figure 1.7: Flow rate during diastole. Values time corrected in order to define the start of diastole as t=0 ms.
Data after Westenberg et al. [20].

Figure 1.8: In vivo flow visualisation in the left ventricle depicting the fluid motion and assymetric rotation
of blood flow during diastole (d) and systole (s). Labels: LA – left atrium, LV – left ventricle, AV – aortic valve
and MV – mitral valve. Image after Kilner et al. [21].

The haemodynamic performance of the left heart has been traditionally linked to heart valve func-

tion through measures such as the effective orifice area (EOA) [23, 2]. Particularly useful in the assess-

ment of stenotic valves or testing of prosthetic valves, the effective orifice area is an empirical formula

derived from Bernoulli’s equation of motion for a steady streamline. Based on a steady flow assump-

tion, it is required that the effective orifice area be evaluated when the fluid is not accelerating, either

under constant flow conditions or at the moment of peak flow over a open/closed cycle. At the point of

peak flow over a single cycle, when considering averaged fluid variables, the sum of the inertial forces

is zero as the forces induced in opening and closing are equal and opposite. Measured in units of cm2,

the effective orifice area is calculated instantaneously (Equation 1.1) or as an average over a single cycle

(Equation 1.2). The instantaneous effective orifice area is evaluated using the instantaneous flow rate

Q in ml·s−1 and the instantaneous pressure difference ∆p in mmHg. Using the same units, the aver-

aged effective orifice area is calculated using the root mean squared of the flow rate Qr m s and the mean

transvalvular pressure difference ∆p . Here the units of pressure and velocity are mmHg and cm·s−1

respectively and the constant term has been defined empirically.
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EOA =
Q

51.6
p

∆p
(1.1)

EOA =
Qr m s

51.6
p

∆p
(1.2)

More recently the non–dimensional vortex formation time has also been used to measure haemo-

dynamic performance (Equation 1.3). A function of the average of the time varying velocity U (t ), the

vortex formation time t and the width of the orifice D, this non–dimensional number is essentially the

ratio of the vortex length L to the orifice width D [24]. Simplified and cast in terms of ventricular param-

eters such as the left ventricular ejection fraction, left ventricular end–diastolic volume and the time–

averaged mitral valve diameter, Gharib et al. [24] used this vortex number to analyse vortex formation

in both healthy patients and diseased patients. The non–dimensional vortex formation times of normal

subjects were found to be within the range from 3.3 to 5.5, significantly higher than patients suffering

from dilated cardiomyopathy in which the non–dimensional vortex formation time was found to range

from 1.5 to 2.5.

T =
U (t ) · t

D
=

L

D
(1.3)

Dysfunctional states

In cases of mitral stenosis the stiffness of the valve structure increases, resulting in an increase of the

haemodynamic resistance of the valve during filling. Due to the reduction in the effective orifice area

the velocity of the jet during filling increases by a factor of approximately 5, with clinical reports of

severe stenoses describing peak velocities up to 2.8 m·s−1 [25]. Clinical assessment of the severity of the

stenosis is performed through evaluating the mitral valve area and the pressure gradient [26] (Table 1.4).

In cases of mitral regurgitation the structure of the valve is not able to sustain the haemodynamic

load during closure, resulting in abnormal deformation and flow reversal. As the leaflets close and are

unable to coapt fully, a high velocity jet is formed as the fluid is forced through the leaflets due to the

high pressure difference in systole. Maximum fluid velocities are reported to range from 4 to 6 m·s−1

[27]. Clinical assessment of the severity of regurgitation is performed through evaluation of the width

of the regurgitant jet (vena contracta width), the regurgitant volume/volume fraction and the effective

regurgitant orifice area [27] (Table 1.5).

Table 1.4: Classification of mitral stenosis based on the mitral valve area (MVA) and mean transvalvular
pressure gradient (MTPG). The transvalvular pressure gradient has been approximated using the simplified
Bernoulli relationship ∆P = 4∆v 2, where v is the transvalular velocity. These recommendations are valid for
heart rates in the range 60–80 bpm and in sinus rhythm. Values after Baumgartner et al. [26].

Severity Mild Moderate Severe
MVA [cm2] >1.5 1.0–1.5 <1.0

MTPG [mmHg] <5 5–10 >10

1.3.2 Annulus

The perimeter of the valvular orifice is defined by the annulus of the valve, a flexible structure that varies

in size and shape during the cardiac cycle. Sharing a structural connection with the aortic annulus,

the areas of the aortic and mitral annuli vary in a reciprocal manner during the cardiac cycle, with the

maximum of the aortic area coinciding with the minimum of the mitral valve and vice versa [12].
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Table 1.5: Classification of mitral regurgitation based on the vena contracta width (VCW), regurgitant volume
(Regur. Vol.), regurgitant fraction as a percentage of the stroke volume (Regur. Frac.) and effective orifice area
of regurgitation (EOAR). Values after Zoghbi et al. [27].

Severity Mild Moderate Severe
VCW [cm] <0.3 0.3–0.69 ≥0.7
Regur. Vol.
[ml/beat]

<30 30–59 ≥60

Regur. Frac. [%] <30 30–49 ≥50
EOAR [cm2] <0.20 0.20–0.39 ≥0.40

Normal state

During early diastole the annulus widens to its maximal size in order to maximise fluid transport into the

ventricle. Conversely during systole the annulus contracts to its minimum size as the valve closes [12].

Relatively planar and circular during diastole the annulus adopts a non–planar hyperbolic paraboloid,

“saddle” shaped, configuration during systole as the heart contracts (Figure 1.9).

The dynamics of the annulus can be described by decoupling the planar and non–planar contri-

butions (Figure 1.10). In the plane of the annulus its profile is described by its eccentricity e , which is

defined by the ratio of its major and minor axes a and b as e =
p

a 2−b 2/a . Measurements show a

reduction of∼ 0.1 in eccentricity from diastole to systole as the annulus adopts a more elliptical config-

uration in closure (Table 1.6) [28]. Out of the plane the annulus is described by the height of the annular

“saddle”. Measurements of the annular height indicate a increase of ∼ 0.1 cm in height from diastole to

systole as the annulus increases its non–planarity in closure (Table 1.6) [28]. However this out–of–plane

motion is not uniform across the annulus, as the anterior portion adjacent to the aorta exhibits larger

displacements than the centre of the posterior portion [29].

The area enclosed by the annulus is a clinical measured parameter as it is used in the classification

of dysfunctions such as mitral stenosis (Table 1.4). Measurement of the annular area in human studies

shows that significant variation exists between different imaging methods (Table 1.7) [30]. Estimation of

the annular area is strongly dependent upon the definition of the annular border and the conversion of

the non–planar geometry into a planar area [31]. However all three imaging methods listed show similar

values for the maximum measured percentage change in area from diastole to systole.

Figure 1.9: Geometric motion of the annulus throughout the cardiac cycle. Image after Votta et al. [32].

Dysfunctional state

In abnormal states the annulus is no longer as dynamic in its motion, as highlighted by measurements

of the eccentricity. In cases of functional mitral regurgitation the eccentricity exhibits less variation

throughout the cardiac cycle (Table 1.6). Similarly the measured annulus area reduction between dias-

tole and systole is reduced from its normal value of 36%±6% to 19%±7% in states of functional mitral
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A
P

CC

(a) Plan view

A
H

(b) Three–dimensional view

Figure 1.10: Illustration of the characteristic geometric variables of the mitral annulus. Labels: AP – antero-
postero diameter, CC – commissural diameter and AH – annular height.

Table 1.6: Annular eccentricity during the cardiac cycle in both normal and functional regurgitant states.
Values after Kaplan et al. [28]. Labels: NRM – normal and FMR – functional mitral regurgitation.

Eccentricity [–] Height [cm]
Phase NRM FMR NRM FMR

End diastole 0.54 0.45 0.63 0.59
Mid systole 0.57 0.50 0.74 0.63
End systole 0.49 0.42 0.73 0.59

Mid diastole 0.49 0.42 0.63 0.57

Table 1.7: Measurement of the maximum/mean enclosed annular areas and the maximum area reduction
during the cardiac cycle. Values after Timek and Miller [30] Labels: 2DE – two–dimensional echocardiogra-
phy, 3DE – three–dimensional echocardiography and MRI – magnetic resonance imaging.

Imaging method Maximum area [cm2] Mean area [cm2] Reduction [%]
2DE 7.1±1.3 – 26±3
3DE – 11.8±2.5 24±5
MRI 9.5±1.4 – 26±5

regurgitation [30]. Unable to reduce the interleaflet distance as in normal states, dysfunction of the mi-

tral annulus results in incomplete coaptation of the leaflets that leads to prolapse and/or regurgitation.

Correction of annular dysfunction is typically performed through the reduction of the orifice size

using a surgical technique known as annuloplasty. Restoration of coaptation is achieved through the re-

duction of the interleaflet distance by the application of an artificial ring sewn directly into the annulus

[33]. There are three main approaches to annuloplasty, each offering different levels of structural sup-

port: (1) complete rigid/semi–rigid ring, (2) completely flexible ring or (3) partial (posterior) flexible ring

[34]. However, uncertainty on the optimal approach to annuloplasty exists as the long–term durability

of the different techniques remain unclear.

1.3.3 Leaflets

The largest components of the valve, the leaflets are primarily responsible for maintaining a haemo-

dynamic seal during closure and preventing flow reversal. During opening the leaflets are required to

transition rapidly from closed to open in order to maximise ventricular filling. Predominantly passive

tissue, the leaflets respond to the haemodynamic load imposed by the transvalvular pressure gradient.

Normal state

Although the anterior and posterior leaflets are approximately equal in anatomical area, during closure

the anterior leaflet covers the majority of the orifice. The posterior leaflets “tuck” into the anterior leaflet
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forming a tight seal. In order to ensure full coaptation under a range of varying pressure loads and heart

rates, the leaflets are formed of an excess amount of tissue that is approximately 1.5–2 times greater

than the size of the mitral orifice [35]. Contact of the leaflets occurs during early systole, however the

leaflets continue to deform until the load between the fluid and structure is balanced. The biomechani-

cal strength to sustain this load without inverting is derived from the constituents of the leaflet tissue, a

topic which is discussed in further detail in Section 1.4.

Traditionally the leaflet tissue has been considered as a non–contractile component of the heart,

however in vivo experiments indicate that portions of the mitral valve contract in response to neural

control [36]. Using an inverse finite element method the anisotropic stiffness of the valve was deter-

mined from recorded in vivo displacements and pressures. Leaflet stiffness was found to increase with

sub–threshold electrical stimulation of the aortic–mitral continuity, which was subsequently abolished

through the application of β–blockers during isovolumic contraction. It is reported that in the anterior

leaflet the nerve density is twice that of the posterior leaflet [37].

In early diastole the leaflets rapidly transition from closed to open. The biomechanical properties

which allow this rapid transition are derived from the constituents of the leaflet tissue, a topic which is

discussed in further detail in Section 1.4. In vitro measurements of the surface stretches induced during

opening have been measured in the porcine anterior leaflet by Sacks et al. [38]. Maximum principal

stretches rates in excess of 1000% per second are measured in the transitions from closed to open.

Dysfunctional state

The biomechanical properties of the leaflets are key to the correct function of the valve, as abnormal

changes to these properties lead to dysfunctional states such as prolapse/regurgitation and stenosis. In

mitral valve prolapse the mechanical strength of the leaflets is reduced which results in abnormal defor-

mation of the leaflets in closure as the valve prolapses. Defined by the excess deformation of the leaflets

into the atrium relative to the annular line (with or without an associated regurgitation), leaflet displace-

ments ≥2 mm are defined as prolapse [39]. In prolapsed states it is reported that the leaflets increase

in size and the tissue microstructure becomes less organised along with associated thinning and/or

elongation of the chordae tendineae. In mitral valve stenosis the mechanical stiffness of the leaflets

increases, increasing the haemodynamic resistance of the valve in filling that results in the abnormal

flow conditions decribed in Section 1.3.1. Caused by rheumatic infection, the leaflets are affected by

thickening and calcification of the leaflets and/or commissural fusion.

Depending upon its severity, correction of these leaflet dysfunctions can be performed either by

surgical repair or by replacement of the valve with an artificial prosthesis. In the case of degenerative

causes of the mitral valve dysfunction it is preferred to perform valve repair over valve replacement as

the long term survival rates are higher [39]. Surgical repair options include the reduction of the leaflet

area, modification of the leaflet structure, repositioning of the native chordae and even the addition of

artificial chordae.

1.3.4 Chordae tendineae

The chordae tendineae connect the valve to the papillary nodes, preventing the inversion of the valve

during systole. Due to their relatively small size and rapid motion, the chordae cannot be visualised in

vivo using current imaging techniques such as ultrasound and magnetic resonance imaging. Functional

assessment of these valvular subcomponents requires the use of experimental in vitro techniques or in

vivo animal models.
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Normal state

Using a left heart simulator, Espino et al. [40] have shown that the removal of the anterior marginal

chordae results in the full prolapse of the valve, as the valve does not offer any resistance during closure

and inverts. However similar removal of the posterior and commissural marginal chordae resulted in

localised leaflet prolapse. Compared to the intact valve, the maximum sustainable pressure load before

prolapse was reduced in chordae removal scenarios.

Using the same methodology the contribution of the larger strut and basal chordae have also been

assessed [40]. These secondary chordae carry a large proportion of the leaflet load during closure and

act to reduce the induced leaflet strain by minimising leaflet deformation. Removal of the strut chordae

does not affect leaflet coaptation or the maximum pressure load sustained. Removal of the basal chor-

dae however reduces the maximum sustainable pressure significantly [40]. Similar in vivo experiments

on ovine valves have also shown that the removal of the anterior strut chordae increase the deformation

in the circumferential direction1 whilst decreasing in the radial direction2 [41].

Dysfunctional state

Similar to the leaflet tissue, changes in the biomechanical properties of the leaflets result in dysfunc-

tional states of the valve. Loss of mechanical strength in the chordae tendineae leads to abnormal de-

formation of the leaflets that result in prolapse/regurgitation. Also resulting in prolapse/regurgitation is

the more severe case of chordal rupture, which is also referred to as a “flail” leaflet. Traditionally rupture

has been linked to rheumatic causes, however recent reports now show an increase in cases associated

with myxomatous degeneration and mitral valve prolapse [42].

Correct function of the chordae has been hypothesised to play a role in the regulation of ventric-

ular function. Dependent upon the force transmitted by chordae, in dysfunctional states this force is

disrupted resulting in remodelling of the ventricle. However the clinical evidence for this is conflicting

[43].

1.3.5 Papillary muscles

Connecting the ventricular wall to the valve via the chordae tendineae, the papillary muscles are muscu-

lar nodes which contract and relax throughout the cardiac cycle to ensure correct valve coaptation and

maximal fluid transfer respectively. Innervated by nerves originating from the atrioventricular bundle

[15], the activation of the papillary muscles are synchronised with the onset of systole [44].

Normal state

During systolic contraction the twisting motion of the ventricle displaces the apex towards the mitral

annulus, simultaneously the papillary muscles contract in order to maintain tension in the chordae

tendineae and maintain normal leaflet deformations. In vivo measurements in ovine hearts by Joud-

inaud et al. [44] indicate that that each papillary muscle remains at a constant distance relative to its

local segment of the annulus (Figure 1.11). Maintenance of this distance arises directly from the pap-

illary muscle contraction, as shown by the corresponding annulus–apex distance which is significantly

different indicating that the muscle tips do not simply follow the ventricular motion.

Protruding into the ventricular cavity, the papillary muscles actively interact with the flow of blood.

During filling the papillary muscles are relaxed and their protrusion into the ventricular cavity are min-

imised, however during ejection the muscles protrude significantly into the ventricle and are considered

to shape the flow towards to the aortic outflow tract [43].

1The circumferential direction is aligned parallel to the annulus as illustrated in Figure 1.14
2The radial direction is orientated orthogonal to the circumferential directions as illustrated in Figure 1.14
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Figure 1.11: Relative distance between the papillary muscle and the mitral annulus through the cardiac cycle.
Here the red and green lines represent non–constant and constant distances during the cardiac cycle. Values
after Joudinaud et al. [44] Labels: AA – mid–anterior annulus, PA – mid–posterior annulus, T1 – left trigone,
T2 – right trigone, P1 – base of antero–lateral cusp of the posterior leaflet, P2 – postero–lateral cusp of the
posterior leaflet, M1 – tip of the antero–lateral papillary muscle and M2 – tip of the postero–lateral papillary
muscle.

Dysfunctional state

Changes in the contractility of the papillary muscle can lead to dysfunctional states of the valve. Abrupt

changes in this contractility arising from rupture of a papillary muscle does result in regurgitation of the

valve. In conjunction with myocardial wall damage, papillary muscle dysfunction can result in mitral

regurgitation. However experimentally induced damage, ischemia or infarction of an isolated papillary

muscle itself does not result in regurgitation [44].

1.3.6 Ventricle motion

Although not part of the valve complex, the function of the ventricle contribute to the function of the

valve in terms of its structural motion and the motion of blood through it.

Normal state

In normal states the ventricle contracts and expands as the heart pumps and fills during systole and

diastole respectively. Valve function occurs as normal.

Dysfunctional state

Loss of contractility in the ventricular myocardium results in dysfunctional states of both the ventricle

and the valve. In cases of ischemia the valve (can) remain functional and mitral regurgitation can still

occur. Referred to as ischemic mitral regurgitation, the loss of ventricular motion results in the leaflets

being subjected to abnormal displacements during closure. Unable to coapt properly, regurgitation

occurs as the leaflets adopt a configuration which is described as “tented” (Figure 1.12). Recently it

has been suggested that quantitative measurement of the tenting area could be used as a measure of

ventricular health [45]. Restoration of valve function is typically performed by reducing the interleaflet

distance during closure through the application of annuloplasty [46].
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Figure 1.12: Illustration of the mitral valve closure in normal and ischemic mitral regurgitation. Here the
normal contractile state is represented in black and the ischemic state in grey. In the ischemic case, regur-
gitation occurs as the loss of contraction results in the incomplete coaptation of the leaflets. The displaced
configuration of the leaflets is commonly referred to as “tenting”.

1.4 Biomechanical properties

Derived from its microstructural composition, the biomechanical properties of the different subvalvular

components vary in accordance with their valvular function. Here in this section the different biome-

chanical characteristics of the leaflets of the valve in both normal and dysfunctional states are reviewed.

1.4.1 Leaflets

Governed by the microstructural arrangement of elastin and collagen fibres, the biomechanical re-

sponse of the leaflets under tension is non–linear and anisotropic. These properties allow the leaflets to

stretch and recoil freely during opening and also provide the tensile strength to withstand the haemo-

dynamic load of closure [47]. Deviation in these properties result in dysfunctional states such as mitral

prolapse/regurgitation and stenosis due to biomechanical weakening and stiffening respectively.

Normal states

As with all soft tissues, the leaflets of the mitral valve exhibit a non–linear and anisotropic biomechan-

ical response when stretched. Divided into two phases, pre– and post–transition, the leaflets exhibit

an exponential increase in stiffness with increasing stretches. The non–linearity of this response is de-

rived from the microstructural content of collagen and elastin fibres bound together in a matrix of gly-

cosaminoglycans (GAGs) and proteoglycans, the functional contribution of which are listed in Table 1.8.

The structure of the leaflet tissue can be divided into three distinct layers: the atrialis and/or spon-

giosa, fibrosa, and ventricularis (Figure 1.13) [49]. Facing the atrium, the atrialis is a thin layer composed

mainly from elastic fibres and smooth muscles cells. Towards the free edge of the leaflet, the atrialis is

replaced by a layer referred to as the the spongiosa. Composed of loosely arranged collagen and elastin,

the spongiosa does not carry significant loads during closure but facilitates the rapid flexure of the valve

during transitions between open/close and vice versa. On the opposite side of the leaflet facing the ven-

tricle is the ventricularis; this layer is formed predominantly from elastic fibres and is the thinnest of all

the layers. As the chordae tendineae insert into the leaflet surface on the ventricular side, this layer con-

tributes to the formation of these structures [50]. Sandwiched between the atrialis/spongiosa and the

33



1.4. Biomechanical properties Chapter 1. Literature Review

Table 1.8: Mitral valve leaflet constituents and their functional properties [48]. Information after Alberts et al.
[48].

Constituent Functional role
Collagen Collagen is a triple helix protein that is cross–linked together to form

larger fibrils which form collagen fibres. The principal load bearing
constituent in the leaflets, the tensile strength of collagen under ten-
sile stretch is comparable to steel. However collagen fibres have no
compressive strength.

Elastin Elastin is a chain like protein which is cross–linked together to form
a network of elastic chains. Rubber like in behaviour, when stretched
these fibres are able to return to their initial configuration upon the
removal of tensile loads.

Fibrillin Fibrillin is a protein which contributes to the microfibrils which form
the sheath around the elastin core elastic fibres; bound to the elastin
fibres, the microfibrils are key to the structural integrity of the elastic
fibre. Key to the assembly of elastic fibres, the microfibrils are consid-
ered to form the base upon which elastin is initially deposited upon.
Mutations in the gene responsible for this protein results in a degen-
erative state known as Marfan’s syndrome.

GAGs & proteoglycans Glycosaminoglycans (GAGs) and proteoglycans are compounds in
which the collagen and elastic fibres of the tissue are bound within,
this matrix lubricates the frictional forces between fibres.

ventricularis is the fibrosa. Composed of compactly arranged collagen, this layer bears the majority of

the load imposed during closure [49]. The collagenous fibres of this layer also eventually give rise to the

load bearing fibres which form the chordae tendineae. Both the total leaflet thickness and the thickness

of the fibrosa layer are significantly thicker in the anterior leaflet than the posterior leaflet [37].

Figure 1.13: Leaflet microstructure of the anterior leaflet stained using Movat pentachrome. Image after
Stephens et al. [51]. Labels: LA – left atrial side and LV – left ventricular side.

The organisation of the fibre orientation through the thickness of the leaflets has shown that the

microstructure is organised relative to the valve anatomy [52]. Aligned circumferentially (parallel to the

annulus) in the central portion of the valve leaflets, in the vicinity of the fibrous trigones and the ante-

rior strut chordae this fibre orientation is found to rotate radially. Such orientation towards anatomical

landmarks was not found to be the case in the posterior leaflet. Measurements on the variability of the

fibre orientation was found to range from 0.58 to 0.65, where 1.0 implies perfect fibre orientation and

0.0 a totally random distribution [52].

This spread in fibre orientation is considered to be the mechanism through which the leaflet (and

other soft tissues) inherit their non–linear and anisotropic properties. Defined with a particular period-

icity of waviness and geometric spread, the fibres are considered to be initially slack when unloaded. At

low stretches the resistance to applied loads is low, as few fibres are taut and able to bear load and/or

orientated in the direction of loading. With increasing stretch the proportion of load bearing fibres in-
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creases as fibres become taut and reorientated in the direction of load, increasing the overall resistance

to loading. It is considered that this non–linear increase in load bearing fibres to applied stretch is the

mechanism through which fibrous tissues inherit their non–linear properties [53].

Figure 1.14: Illutration of the experimental proceedure used to characterise the leaflet biomechanical prop-
erties. The circumferential directions is defined as parallel to the annulus, with the radial direction defined
orthogonal to this. Image after May-Newman and Yin [54].

The mechanical response of the mitral valve has traditionally been characterised in the circumferen-

tial and radial directions as illustrated in Figure 1.14. Experimental observations have shown that when

loaded from an initially unloaded state, mitral valve tissue (like most soft tissues) exhibits a hysteretic

stress–strain response in loading and unloading [54]. However if correctly preconditioned using a cyclic

loading protocol (8–10 cycles) [54], the tissue produces a pseudoelastic response as the tissue adapts

to its cyclic loading and the hysteretic response dissipates. Experiments on porcine anterior leaflets by

Grashow et al. [55] have show that although the leaflet show significant stress relaxation under constant

stretch, negligible creep was observed under constant stress tension. Over a three hour period the cir-

cumferential and radial stretch were found to vary by ∼1%. These results indicates that valvular tissue

is not viscoelastic, but quasi–elastic.
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(a) Anterior leaflet (b) Posterior leaflet

Figure 1.15: Experimental results showing the membrane stress–strain relationship in (a) anterior and (b)
posterior leaflets of an excised porcine mitral valve from May-Newman and Yin [54]. Note that under uniax-
ial testing the radial stress in both leaflets displays a different mechanical response when compared to the
biaxial case, indicating the dependency of the radial stresses on the circumferential load. Figure labels: Í –
equibiaxial radial,# – equibiaxial circumferential, Î – uniaxial radial and – uniaxial circumferential.

Mechanical tests on excised porcine valves have shown that the leaflets are stiffer in the circumferen-

tial directions; variation in the stiffness between leaflets are also reported, with the the posterior leaflet

more isotropic in its mechanical response and more extensible than the anterior leaflet [54]. The earli-

est tests of leaflet tissue were performed using uniaxial testing procedures [56], however this approach

is unable to account for the in–plane anisotropic coupling of the leaflet tissue. As highlighted in Figure

1.15, comparison of uniaxial and biaxial testing procedures indicate that loads in the circumferential

direction strongly affect the radial response. Thus in order to correctly characterise the anisotropic in–

plane behaviour of the leaflets, biaxial testing is required.

Further characterisation of the mechanical response of the leaflet tissue shows regional variation.

Earlier uniaxial testing have reported that regions adjacent to chordal attachment reported have an ini-

tial elastic moduli greater than regions in the centre of the valve [57]. More recently biaxial testing has

been performed on leaflet tissue in the vicinity of a chordal attachment [58]. At these locations the colla-

gen fibres are highly directed, aligning locally to the direction of the attached chordae tendineae. Results

of these mechanical tests show decreasing extensibility and increasing stiffness in radial direction with

proximity to the chordae insertion.

The above experiments have all been performed upon excised valves in vitro. Using an inverse finite

element method Krishnamurthy et al. [59] have performed an in vivo assessment of the post–transition

stiffness. Using geometric markers applied to an ovine heart, the anisotropic stiffness of the leaflets has

been approximated from the measured deformations at different points in the cardiac cycle. Results

indicate that during isovolumic relaxation the stiffness of the valve is linear, with the circumferential

stiffness greater than the radial. However it is not possible to measure the pre–transition phase as this

approach lacks the temporal resolution required.

Dysfunctional state

Changes in the organisation of the tissue microstructure alters the biomechanical properties, resulting

in dysfunctional states. In states of myxomatous degeneration, the leaflet tissue is reported to be ab-

normally thick with irregular regions of collagen [60] and a disorganised arrangement of the fibrosa [61].

Comparison of the collagenous content between normal and degenerate leaflets shows that collagen
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content increases by 9–53%, depending upon collagen type (I, III or V) [61]. The effect of this upon

the mechanical properties has been assessed in normal, myxomatous and flailing human valves by Bar-

ber et al. [62] and Mills et al. [63]. Obtained from human subjects undergoing valve repair or replace-

ment, uniaxial measurements in both the circumferential and radial directions have been performed.

The results indicate that pre–/post–transition stretch increases, as the leaflets become more extensi-

ble. Measurements of the post–transition elastic modulus show that the stiffness decreases compared

to normal valves. Similar experimental measurements have been performed by Prot et al. [64], who ob-

tained diseased valves from hypertrophic obstructive cardiomyopathic hearts. As with the myxomatous

and flailing valves, biomechanical tests on these valves indicated that they were more extensible and

less stiff than normal valves.

1.4.2 Chordae

Similar to the microstructure of the leaflets, the chordae tendineae are composed of a mixture of colla-

gen and elastin [65]. The structure of the chordae is arranged with the collagen fibres in the centre of the

chordae, aligned with the axis direction; surrounding this central core is a thin sheet of elastic fibres in-

termixed with collagen fibres (Figure 1.16). Using optical and scanning electron microscopy, it has been

observed in unstretched states that the collagen fibres are arranged in a undulating pattern aligned with

the axial direction [66]. Also referred to as “crimp”, this variation in the pitch of collagen fibres has been

suggested as the mechanism reponsible for difference in mechanical properties [65].

Figure 1.16: Illustration depicting the microstructure of the chordae tendineae. E1 and E2 layers refer to the
outer and inner layers respectively. Image after Millington-Sanders et al. [66].

Normal state

Similar to the leaflet tissue, chordal tissue also exhibits a non–linear stress–strain response. As the fibres

are aligned in a common direction, experimental measurements are simplified as uniaxial testing is

sufficient. Stress–strain data reported by Kunzelman and Cochran [67] has characterised the non–linear

behaviour of both the marginal and basal tendineae. Using porcine samples, these results indicate that

the marginal chordae are less extensible and stiffer than the larger basal chordae. Reported in units of

grams per millimetre squared, conversion to SI units is performed using 1 g mm−2 = 9806Nm−2.
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Further measurements on porcine samples by Liao and Vesely [68] report the differences between

the marginal, basal and strut chordae. Results indicate that the diametric size of the chordae is propor-

tional to the extensibility of the chordae and inversely proportional to its elastic modulus. The mech-

anism of this mechanical behaviour is considered to be a function of the collagen fibre pitch, as ex-

perimental measurements show an inversely proportional relationship between the periodicity of the

collagen pitch and the chordal extensibility [68].

Dysfunctional state

As with the valve leaflets, changes in the organisation of the chordae microstructure alters the biome-

chanical properties and results in dysfunctional states. Uniaxial tests on myxomatous chordae tendineae

have been reported by Barber et al. [69], results state that myxomatous chordae are twice as large normal

chordae in terms of both cross–sectional area and mass. Measurement of the post–transitions elastic

moduli and the failure stress of the myxomatous chordae were less than 25% of the normal values. Sim-

ilar measurements have been performed upon flailing chordae by Mills et al. [63], similarly results show

that the flail chordae are more extensible than normal and ultimately fail at lower stresses.

1.4.3 Mathematical models

In the case of soft tissues where the strains are finite (i.e. large), the biomechanical response have tra-

ditionally been modelled using finite hyperelasticity theories. Using experimental data, such as that

described previously in Sections 1.4.1 and 1.4.2, mathematical models can be constructed which de-

scribe the mechanical response of the tissue. The benefits of such an approach are vast as modelling

provides a methodology in which the mechanical response can be assessed under in vivo conditions.

For more information regarding the theory of finite hyperelasticity please refer to Holzapfel [70] and

the references contained therein.

Kinematics

Here the kinematics of motion are described within a Cartesian coordinate system defined by the a

set of orthonormal vectors {e1, e2, e3}. In this coordinate system an elemental mass is located at the

position X = [X1, X2, X3] at an arbitrary reference time t0. At the current time t , this mass element is

located at the different position x= [x1,x2,x3]. The motion of this mass element through the coordinate

space is given by the mapping x= χ(X, t ) (Figure 1.17). This function is assumed to be continuous and

differentiable, allowing for the definition of the deformation gradient tensor F (Equation 1.4) [71]. Here

⊗ is the dyadic vector product and the indices i , j = 1, 2, 3. In this work a membranous definition has

been adopted, thus the out–of–plane response is not coupled with the in–plane motion and vice versa,

i.e. F13 = F23 = F31 = F32 = 0 (Equation 1.5).

F(t0, t ) =
∂ x

∂ X
= Fi j (t0, t )ei ⊗ej (1.4)

F=











F11 F12 0

F21 F22 0

0 0 F33











(1.5)

For soft tissues it is a typically assumed that the element mass is incompressible (i.e. volume con-

serving), which gives the incompressibility constraint J = det F = 1 [72]. Example of the deformation

gradient (in an incompressible state) under uniaxial, biaxial and shearing stretches are illustrated in

Figure 1.18. The corresponding values of the deformation gradient to these states are defined in Equa-

tion 1.6. Here the left and right Cauchy–Green deformation tensors are introduced, B and C respectively
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|a0| = 1

|a| =  λf
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x=  (X,t)χ

Figure 1.17: Deformation of a continuum body at position X at time t = 0 to the position x at time t . The
mapping beween these two positions is defined as χ where x=χ(X, t ), assumed to be a continuous function
the derivative of this mapping is referred to as the deformation gradient F = ∂ x/∂ X. Embedded within the
initial configuration γ0 at time t = 0 is a vector a0, this vector is convected with the motion of the body such
that at time t this vector adopts the orientation a where a = F a0.

(Equations 1.7 and 1.8). Linked to the deformation tensor, these tensors are also used to quantify the

deformation of the elemental mass.

Fu ni a x i a l =
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(1.6)

Fs he a r =











1 γ 0

0 1 0

0 0 1











B= FFT (1.7)

C= FT F (1.8)

In order to model the effects of the anisotropy in materials such as soft tissues, it is required to pro-

vide the elemental mass with an additional directional stiffness. Using virtual fibres embedded within

the material, an anisotropic stress response can be generated [72]. The initial direction of this fibre at

time t0 is defined by the unit vector a0, where a0 ·a0 = 1. The motion of this vector follows the motion of

the elemental mass, thus at time t its current direction is given as a= Fa0 (Figure 1.17). The deformation
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γ= x/y
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y

Figure 1.18: Two–dimensional illustrations of the uniaxial, biaxial and shear deformations. The values of the
deformation gradient in these states are given in Equation 1.6. Here the in–plane stretches λ are labeled in
color, with the associated out–of–plane stretches λz defined adjacent to the relevant deformation.

of this vector can be measured by the stretch of this vector, λ f (Equation 1.9).

λ2
f = a ·a= (Fa0)T · (Fa0) = a0(Ca0) (1.9)

Discrete fibre strain–energy functions

As stated previously, the elastic properties of soft tissues can be modelled using finite hyperelastic theo-

ries [70]. For a finite hyperelastic material the elastic properties are defined by its associated Helmholtz

free–energy functionψ, which when defined solely as a function of the deformation gradient F (or some

other strain tensor) is more commonly referred to as the strain–energy or stored–energy function. It is

through the derivatives of this scalar valued function that the stresses are related to the deformation.

For the mitral valve leaflets there exist two separate strain–energy functions that have been fitted to the

biaxial data reported by May-Newman and Yin [54].

Reported by May-Newman and Yin [73] and Prot et al. [74], both functions are non–linear and model

the anisotropic behaviour of the leaflet tissue with a single discrete embedded fibre system which lies in

the plane, i.e. a a0 = [a 01, a 02, 0]. Referred to as transversely isotropic, single fibre family materials can

be described using five invariants ( I1, I2, I3, I4 and I5) of the right Cauchy–Green tensor C (Equations

1.10 – 1.14) [71].
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I1 = tr(C) =C11+C22+C33 (1.10)

I2 = 1/2
�

tr (C)2− tr
�

C2
��

(1.11)

I3 = det C (1.12)

I4 = a0 · (C a0) = a 01C11a 01+a 01C12a 02+a 02C21a 01+a 02C22a 02 (1.13)

I5 = a0 · (C2 a0) (1.14)

The two strain–energy functions are a function of the 1st invariant I1 (Equation 1.10) and 4th pseudo–

invariant I4 (Equation 1.13), which describe the volumetric dilation and square of the stretch in the fibre

direction respectively λ2
f (see Equation 1.9). The May-Newman and Yin [73] and Prot et al. [74] strain–

energy functions (Equations 1.15 and 1.16 respectively) are similar in form, only differing in the I4 term.

The corresponding parameter for these strain–energy functions are listed in Table 1.9.

ψ(I1, I4) = c0

�

exp
h

c1(I1−3)2+ c2(
p

I4−1)4
i

−1
�

(1.15)

ψ̃(I1, I4) = c̃0

�

exp
�

c̃1(I1−3)2+ c̃2(I4−1)2
�

−1
�

(1.16)

Table 1.9: Parameters for the strain–energy functions listed in Equations 1.15 and 1.16.
Equation/Source Leaflet c0 (kPa) c1 c2

1.15 Anterior 0.399 4.325 1446.5
[73] Posterior 0.414 4.848 305.4

Equation/Source Leaflet c̃0 (kPa) c̃1 c̃2

1.16 Anterior 0.052 4.63 22.6
[74] Posterior 0.171 5.28 6.46

Both strain–energy functions are converted to the second Piola–Kirchoff stress tensor using Equation

1.17 (note thatψ is interchangable with ψ̃) [74]. The derivatives of the 1st and 4th invariants are shown

in Equations 1.19 and 1.20, here the term p is the internal pressure of the material. For membranes the

through plane component of the stress is zero, i.e. S33 = 0, which gives the pressure constraint (Equation

1.18).

S= 2
4
∑

i=1
i 6=2,3

∂ ψ

∂ I i

∂ I i

∂ C
+p C−1 (1.17)

p =−2
4
∑

i=1
i 6=2,3

∂ ψ

∂ I i

∂ I i

∂ C33
C33 (1.18)

∂ I1

∂ C
= I (1.19)

∂ I4

∂ C
= a0⊗a0 (1.20)

Continuous fibre strain–energy functions

Optical examination of the tissue microstructure indicates that the mean fibre orientation and standard

deviation vary in the different regions of the leaflet (Section 1.4.1). In the discrete approach detailed

above only the mean fibre angle is accounted for, the effects of fibre splay require a continuous approach
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in which the fibre orientation is defined using a probability density function. A comparative study of the

two methods by Bischoff [75] has shown that the discrete method results in large discrepancies with

large standard deviations of fibre splay. In cases of uniaxial loading the two methods were found to be

in close agreement, however in cases of biaxial loading, significant differences in the displacement were

found in cases of fibre splay >5◦.

For the mitral valve, a continuous fibre model of the valve leaflets has been reported by Einstein

et al. [76]. Derived from the approach originally reported by Billiar and Sacks [77], this model is based

upon a continuous distribution of fibres which are defined with a preferred mean direction and standard

deviation centred on this mean with a Gaussian distribution (Figure 1.19). It is from this continuous fibre

distribution that the non–linear and anisotropic mechanical response is generated.

α θ
µ

Figure 1.19: Illustration of collagen fibre arrangement in the continuous fibre model of Einstein et al. [76].
Embeded within an isotropic matrix of stiffness α, the fibres are defined with a preferred mean direction µ
and a standard deviation about this mean of θ . Image after Einstein et al. [76]

In the continuous fibre model the second Piola–Kirchhoff stress S is calculated using Equations 1.21

– 1.25, for further details regarding the derivation of this model and the terminology used here refer

to Billiar and Sacks [77] and Einstein et al. [76]. Evaluated from a continuous in–plane distribution of

fibres, the key parameters in this model are the fibre stretch s f and the angular distribution of fibres

R(θ ). Fitted to experimental data, the parameters used to model the mitral valve leaflets are listed in

Table 1.10.

Implementation of a continuous distribution has been reported to be more computationally inten-

sive. The evaluation of the integral term is reported to require at least 18 discrete intervals increasing the

numerical cost per element by 18 times [71]. More efficient approaches of continuous fibre modelling

based upon an invariant formulation is detailed in Freed et al. [71], however this has currently only been

applied to aortic valves.

S= p J C−1+2J −2/3DEV

�

∂ W̃

∂ C̃

�

(1.21)

DEV ( ) = ( )−
1

3
tr ( ( ) C)C−1 (1.22)
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Table 1.10: Continuous fibre model leaflet parameters for Equations 1.21 – 1.25, values taken from Einstein
et al. [76]. Labels: A – fibre volume fraction, B – fibre stiffness, σ – fibre angle standard deviation and α –
isotropic matrix stiffness.

Leaflet region A [kPa] B [–] σ [◦] α [kPa]
Anterior 0.070 40 20 10
Posterior 0.005 40 20 10

Commissures 0.030 40 20 10

Finite element implementation

Comparison of the two discrete fibre strain–energy functions defined in Equations 1.15–1.16 have been

implemented and examined in the structural solver ABAQUS [74]. Using the fourth–order elasticity ten-

sor, these strain–energy functions have been implemented using a implicit time integration scheme.

In–plane behaviour of a single element show no significant difference between the analytical solution

in both the fibre direction and cross–fibre direction. Out–of–plane behaviour was assessed by direct

comparison against the numerical results of an earlier hyperelastic orthrotropic constitutive model, for

which the two strain–energy functions were refitted to match the earlier hyperelastic model. Out–of–

plane deformation was induced by simulating the inflation of a spherical membrane by a transverse

pressure load, here the fibre aligned in the circumferential direction. Comparison of the out–of–plane

displacement show similar values to the earlier hyperelastic orthotropic material model, however dif-

ferences were noted between the two strain–energy functions. When pressurised the sphere adopted

an ellipsoid shape, the Prot et al. [74] strain–energy function was shown to be stiffer at the centre of the

ellipsoid but weaker at the tips than the May-Newman and Yin [73] strain–energy function.

A hyperelastic anisotropic finite element membrane formulation has been reported by Einstein et al.

[78]. Implemented in the commercial code LS–DYNA the implementation of the strain–energy func-

tion has been performed using reduced integration corotational Hughes–Liu continuum shell elements

[79, 80]. Validated by comparison to Mooney–Rivlin rubber models, with and without anisotropy, this

membrane formulation avoids the numerical shear locking phenomenon through reduced integration.

As the integration is reduced in the thickness direction in order to degenerate the element to a mem-

brane, the stress is assumed to be uniform over the element. The deformation gradient is calculated and

stored using a user defined subroutine. This algorithm has been used in this work and further discussion

on this topic can be found in Chapter 2, Section 2.3.1.3.

Using a mixed displacement–pressure finite element formulation Weinberg and Kaazempur-Mofrad

[81] have implement the strain–energy function reported by May-Newman and Yin [73]. This mixed

displacement–pressure formulations has been modified in order to keep the stiffness matrix positive

definite at low strains by using a small neo–Hookean contribution to the strain–energy function. Imple-

mented in the commercial finite element solver ADINA, single element tests under uni/biaxial stretches

are reported and compare well to the analytical solutions. This has been followed by an updated formu-

lation that includes a through thickness strain calculation based upon a plane stress assumption in a

three–dimensional shell element [82]. Using the same strain–energy function, this has also been imple-

mented in ADINA 4–node element with 2×2×2 Gauss point integration. Results include single elements

under uni/biaxial stretch and a simple three–dimensional case [82].

1.5 Numerical models

Although advances in imaging techniques such as magnetic resonance imaging [83] and echocardiogra-

phy [84] allow the extraction of anatomical detail and even the flow characteristics of blood flow, these

modalities do not provide an insight into how the valves function such as stress state. In order to better

understand the complexity of heart valve function it is required to supplement clinical observations with

experimental and numerical techniques that allow in–depth examination of function. Although there
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exist a variety of different models of the mitral valve, here in this section the focus has been applied

primarily to three dimensional finite element models of the mitral valve.

1.5.1 Modelling methodologies

Simulation of mitral valve function has progressed significantly over the last 18 years since the publi-

cation of the first three dimensional model by Kunzelman et al. [85]. By modelling the valve as a solid

body that satisfies the mass and momentum conservation, the equations of motion which define the

dynamics of the valve can be approximated using the finite element method (Appendix B.1.2). Although

differences exist in the numerical implementation of the stress, all the heart valve models described here

are based upon the solution of the same equations of motion.

Depending upon how the haemodynamic load is applied to the model, simulation of mitral valve

function can be divided into structural–only or fluid–structure interaction models. As the term sug-

gests, fluid–structure interaction models includes and couples together both the fluid (blood) and struc-

tural (valve) domains, whereas structural–only models only contain the structural domain of the valve

in which case the haemodynamic load must be approximated. This particular issue has been explored

within Chapter 3, where the differences between these two modelling methodologies has been charac-

terised in the context of valvular dynamics.

1.5.2 Model geometries

As detailed in Section 1.2, the anatomical form of the mitral valve is strongly asymmetric and contains

significant variation in the number of cusps and chordal attachments for example. Geometric variation

between the models reflects the different models interpretation of the anatomical variation of the mitral

valve itself. Geometric variation also exists as determination of the in vivo stress–free configuration,

which corresponds to the initial geometric state of the valve, is currently not possible [59]. In general

features are noted across the different models such as the number of leaflets (two), however variation

does exist in the number of posterior leaflet scallops modelled and the shape of the annular profile. A

comparison of the different model geometries is reported by Votta et al. [32].

In order to solve the conservative equations which describe the dynamics of the structure/fluid us-

ing the finite element method, it is required to discretised the geometry. Typically the leaflets of the

valve have been modelled using two–dimensional shell elements or three–dimensional solid elements.

whereas the chordae tendineae are typically modelled using one–dimensional beam elements. The fluid

domain is typically modelled using three–dimensional solid elements. For more details regarding finite

element technology refer to Zienkiewicz et al. [86].

1.5.3 Valve function

Numerical models enable the study of scenarios which cannot be measured (i.e. stress) or not possible

to be tested experimentally either in vivo or in vitro. The use of mitral valve models has permitted the

examination of the different subcomponents of the valve, giving an insight into the contribution of each

subcomponent to the overall function of the valve. Here in this section the different mitral valve models

have been grouped together broadly by the class of material model used to describe the biomechanics of

the valve, beginning with linear elastic materials followed by hyperelastic non–linear elastic materials.

Linear elastic models

Kunzelman et al. [85] and Kunzelman et al. [87] and Kunzelman et al. [88]

The earliest structural 3D finite element model of the mitral valve was developed in 1993 by Kunzelman

et al. [85]. Using the finite element structural solver ANSYS, simulation of closure in a symmetrical
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valve model has been simulated. The results of this model show that the largest principal stresses in the

valve are tensile in closure, with larger stresses induced in the anterior leaflet than the posterior leaflet.

Principal stress directions were found to correspond to the local collagen fibre direction defined in the

model.

The geometry of this model was based upon anatomical resin casts taken from porcine heart, with

the leaflets, chordae tendineae and the papillary muscles defined in their open positions. Idealised us-

ing constant thickness shell elements, the leaflets have been modelled using an anisotropic linear elas-

tic material model and constant thickness whereas the chordae have been modelled as linearly elastic

beam elements. In the leaflets, the anisotropic material properties are orientated with respect to the col-

lagen fibres with the largest value of stiffness defined in this direction; in the model this has been defined

locally in each shell element following experimental mapping of the fibres. The material properties of

each leaflet have been defined independently, with the anterior leaflet modelled as more anisotropic;

the ratio of stiffness in the anterior leaflet are 6.2/2.1 MPa compared to 2.4/1.9 MPa in the posterior

leaflet. The effects of bending in valvular tissue have been assumed to be negligible, minimal bending

stiffness was applied to the shell elements. Simulated in the absence of blood, the inertial effect of blood

in this structural–only model has been approximated by increasing the density of the full structure by a

factor of ten.

Using the model described previously, the effect of annular dilation on the valve has been assessed

[87]. Simulation of dysfunction has been performed by increasing the annular circumference by 18%.

Closure of the valve occurs with delayed coaptation when compared to the normal model, with the in-

complete coaptation observed. The magnitude of the principal stress was shown to increase by a factor

of two in both leaflets.

Salgo et al. [89]

The effect of a non–planar saddle shaped annulus on the predicted values of stress in a structural–only

model has been investigated by Salgo et al. [89]. The results of this model have shown that both the

curvature and non–planarity of the annulus independently reduce the maximum predicted Von Mises

stress and in combination further reduce the stress.

Based upon an elliptic shaped annulus, the valve has been defined in a closed state with the free

margin of the two leaflets joined together. Using shell elements, the leaflets have been modelled as a

linearly elastic orthotropic material which was defined with a larger elastic modulus in the fibre direc-

tion. In this model the fibre direction is oriented in the direction of the commissural–to–commissural

direction. Implemented in the finite element solver Algor, structural–only simulations of systole have

been performed by applying a pressure load of 16 kPa. A set of different models have been created

which are characterised by the annular height to commissural width ratio, ranging from 0 to 20%. The

predicted Von Mises stresses were found to be minimised at an annular height to commissural width

ratio of 15–20%. In vivo measurements performed by the authors of this model support these results,

with the average value of this ratio reported as 15% in humans, sheep and baboons.

Lim et al. [90]

The effect of the 3D annular displacements on the mitral valve have been examined in an asymmetrical

model of the valve by Lim et al. [90]. The effect of this dynamic motion was shown to reduce the stress

concentration in the posteriormedial commissural region when compared to the anterolateral commis-

sural region due to the asymmetric skewing of the leaflets.

The geometry of the model was generated from in vivo data obtained from 12 ultrasonic transceiver

crystals embedded into the structure of an ovine heart taken at diastole; accordingly the geometry of the

valve is asymmetric and contains a saddled shaped annulus. Modelled using shell and beam elements,
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the anisotropy of the leaflets has been neglected as the leaflet material has been assumed to be isotropic.

Applying the experimentally measured pressure loads and the displacements of the annulus and pap-

illary muscles throughout the cardiac cycle, a structural–only simulation of the full cardiac cycle has

been performed using the structural solver ANSYS v5.7. The results of these simulations indicate that

the highest stresses are located in the commissural region between the anterior and posterior leaflet and

at the leaflet free margin. Due to the asymmetry of the valve geometry the stresses are also asymmetric,

with a larger stress concentration on the anterolateral side.

Non–linear elastic models

As reviewed in Section 1.4, the biomechanical properties of the valve tissue are both non–linear and

anisotropic. The linear simplification results in underestimation of the deformation, as non–linear ma-

terials are able to deform more freely than a linear material given the same magnitude of stress. Here

the latest hyperelastic models are reviewed, which include features such as the non–linear anisotropic

behaviour of the valve tissue and fluid–structure interaction.

Prot et al. [74], Prot and Skallerud [91], Prot et al. [92], Prot et al. [64] and Skallerud et al. [93]

The effect of annular motion, chordal support and the material properties of the leaflet tissue have been

examined through a family of structural models by Prot et al. [74], Prot and Skallerud [91], Prot et al.

[92, 64], Skallerud et al. [93]. All of these models have been implemented in the finite element structural

solver ABAQUS and all feature a hyperelastic, anisotropic membrane, strain–energy function material

model [74].

The earliest of these models reports the simulation of valve closure with and without the thicker

strut chordae tendineae[74]. Unlike other models, the geometry of the model only contains the anterior

and posterior leaflets, attached to a circular annulus; the connective tissue of the commissural regions

has not been included. Coaptation of the leaflets has been ensured by the positioning of the two leaflet

segments on opposing sections of the circular annulus. In this model the leaflets and chordae tendineae

have been represented using shell and beam elements respectively. Using this model, the elongation or

rupture of the strut chordae has been simulated through the modelling of the valve with and without

the basal chordae. Simulating only closure with a transvalvular pressure ramp of 80 mmHg, as obtained

in vivo from a porcine heart, the numerical results have been compared against in vivo ultrasound mea-

surements from a human subject. The results of these simulations indicate that with the additional

support of the strut chordae, the displacement of the valve during closure better matches the physio-

logical displacements exhibited by a normal valve when directly compared to a marginal chordae–only

model.

Using the same material model, this geometry of the previous model was updated to include anatom-

ical measurement of a porcine valve, local collagen fibre directionality and a saddle shaped annulus

(Figure 1.20) [92]. Using in vivo ultrasound measurements from a porcine heart the saddle–shapped

annulus has been simulated as both static and dynamic; in the dynamic case the motion of the annu-

lus was mimicked by changes in the anterior portion of the annulus, whilst the posterior side remained

fixed. The material anisotropy in each shell element has been defined locally following experimen-

tal measurements. Simulation of the valve closure was performed using a transvavular pressure ramp

which has now been scaled to a peak pressure of 120 mmHg. As in the previous model the effect of the

strut chordae were examined by simulating the valve with and without these secondary chordae. The

resulting simulations indicated that these chordae are responsible for approximately 30% of the papil-

lary muscle load during closure and without these structures the tensile load in the marginal chordae

doubles. From the simulations of static and dynamic annular motion it was found that increases in the

height of the saddle does not significantly modify the chordal forces or stresses induced in the leaflets.
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Figure 1.20: 3D model geometry of Prot et al. [92].

A solid element version of the previous model has been used to examine the effect of modelling

the leaflets as a transversely heterogeneous material upon the valve deformation [91]. Unlike past and

present models which have all assumed transverse isotropy through the leaflet thickness, this model has

been defined with three different sections to represent the atrialis, fibrosa and ventricularis of the valve

leaflets. As with the previous model, the model includes anatomical measurements taken from porcine

samples, a saddle shaped annulus and local collagen fibre directionality. However here the leaflets have

been discretised into three sections of solid brick elements, which represent the three different sections

of the leaflet ( atrialis/fibrosa/ventricularis). By varying the stiffness in the fibre direction in each layer,

the behaviour of the leaflet as a one/two/three layered structure has been examined.

As before, simulation of valve closure was performed with using a transvalvular pressure ramp of

120 mmHg. Results show that the heterogenous modelling of the leaflet layers does not change the de-

formed configuration at closure, as all three variations exhibit identical behaviour. However increases in

the stresses in the central section of the anterior leaflet were observed in the heterogenous layer mod-

els, with larger magnitude stress on the atrial side when compared to the ventricular side. The effect of

the attachment of the strut chordae was also investigated by varying the area covered by the chordae in

the radial and circumferential directions of the leaflet surface. Additional support in the circumferential

direction was shown to result in a flatter deformed profile with a reduced displacement above the annu-

lar line during closure. Comparison of the valve deformation was performed against echocardiographic

recordings taken from a porcine heart, from these measurements it was found that the simulated valve

is displaced further into the atrium than observed in vivo.

Using the single layer solid element model described above, the effect of a normal and dysfunc-

tional biomechanical state has been examined in a three–dimensional model [64]. Experimental tests

on normal and dysfunctional leaflet tissue have been performed and are reported; these results show

that the biomechanical response of both the normal and dysfunctional tissue is anisotropic, however

the dysfunctional tissue is weaker and exhibits larger stretches at equivalent loads (Section 1.4.1). This

data was then extrapolated and fitted to the strain–energy function used to describe the leaflet material

properties (Equation 1.16). As in the previous model a localised preferred fibre orientation has been

used, this has been assumed to remain constant between normal and dysfunctional states. As before

simulation of closure has been performed with a transvalvular pressure load of 120 mmHg. Comparison

of the valve deformation between the normal and dysfunctional states show that the weakened biome-

chanical properties of the dysfunctional model result in larger deformation, with the valve protruding

above the annular line. Comparison to the porcine strain–energy function used in previous models was

also performed, with the dysfunctional state still exhibiting greater deformation.

More recently an update to these models has been reported which includes active muscle con-
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traction of the leaflet tissue [93]. Following experimental observations highlighting the contractile be-

haviour in the leaflets, the strain–energy function previously used to model the material properties of

the leaflets has been modified to include an additional contractile fibre to the existing collagen fibre

(refer to Skallerud et al. [93] for more details). Based upon anatomical descriptions and observations,

the distribution and orientation of the muscle fibres have been assumed. Also assumed is the level

and directionality of contractility, different levels of maximum contractile stress have been examined

(100/200/300 kPa) along with contractile contribution in the collagen fibre direction which results in an

orthotropic response. Modifying the two layer model solid element variant of the previous models, sim-

ulation of closure with a transvalvular pressure load of 120 mmHg has been performed with different

levels of contractility, maximum contractile stress: 0, 100, 200 and 300 kPa. The deformation of the nor-

mal and contractile models has been compared, with the results showing reduced deformation in the

central region of the leaflets. Comparison to in vivo experimental measurements have shown that the

predicted deformation of the active model is significantly closer to the experimental results, suggesting

that the contractility of the leaflets may have a strong physiological role.

Votta et al. [32] and Stevanella et al. [94]

The effect of the leaflet material properties and the motion of the annulus and papillary muscles have

been examined in a family of models by Votta et al. [32] and Stevanella et al. [94]. Based upon the ge-

ometry of earlier linear elastic models [95], here the material properties have been updated and defined

as non–linear. Implemented in the structural solver ABAQUS, the leaflets have been defined using the

hyperelastic strain–energy function reported by Prot et al. [74].

The first model in this family has been used to examine the effect of annular and papillary muscle

motion [32]. In this model the preferred fibre direction has been defined globally as circumferential,

following the annulus around the orifice. The base of the model is a saddle shaped annulus which has

been determined from in vivo measurements, simulations of valve closure has been performed with

a transvalular pressure load of 120 mmHg, with and without dynamic annular motion. With dynamic

annular motion, the time dependent displacement of the annulus has been applied as boundary con-

dition during the simulation. The results of these simulations show that prior to coaptation the stress

distributions are similar, however following coaptation the stresses are lower in the static model than

in the dynamic model, with stresses in the anterior leaflet 67% higher in the dynamic model than the

static model. The most highly stressed regions were the areas adjacent to the attachment of the strut

and marginal chordae, with peak stresses reported as 1200 kPa. In the dynamic model an asymmetri-

cal tension was shown in the anterolateral papillary muscle which experienced a lower load than the

posteromedial side, however this difference was not observed in the static model.

Figure 1.21: Initial valve geometry of the mitral valve model of Votta et al. [32].

An update of this model further examines the effect of the subcomponent motion on the stress state

of the valve under closure [94]. The key features of the previous model have been adopted here (saddle
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shaped annulus, non–linear anisotropic material behaviour, etc.), the only significant change is in the

material properties in the leaflet tissue at the insertion of the strut chordae. Here the shell elements in

the vicinity of the strut chordae insertion have been been defined as isotropically elastic with a Young

modulus of 60 MPa and a Poisson modulus of 0.48 rather than hyperelastic. The peak stresses observed

in the previous model are therefore reduced to 300 kPa from 1200 kPa. The results of these simulations

show that while the anterior leaflet experiences tensile strains, the posterior leaflet undergoes compres-

sive strains as the tissue folds during closure.

Einstein et al. [76],Einstein et al. [96],Einstein et al. [97] and Kunzelman and et al. [98]

The effect of haemodynamic loading and tissue dysfunction on the mitral valve component of the

first heart sound have been examined in a family of models [76, 96, 97, 98]. Updating earlier linear

elastic models, these models are implemented in the finite element solver LS–DYNA and include both

non–linear anisotropic material models. Uniquely these models also include the predicted acoustic

radiation, linking the function of the valve to the generation of the first heart sound in both normal and

dysfunctional states. As such these model are the only fluid–structure interaction models of the native

mitral valve reported within the literature. The results of the two studies detailed here have are also

contained in the reviews by Einstein et al. [97] and Kunzelman and et al. [98].

The first model in these series examines the effect of haemodynamic loading on the acoustic radia-

tion, varying the amplitude (pmax) and the time derivative (dp/dt) of the transvalvular load [76]. Based

upon a valve geometry described in previous studies this model is also symmetrical along the anteropos-

tero axis, a factor which simplifies and reduces the computational time required (Figure 1.22). Defined

as a non–linear elastic structure, the leaflets have been discretised using shell elements which have been

defined as an anisotropic non–linear hyperelastic membrane governed by a continuous fibre distribu-

tion. The localised leaflet thickness and collagen fibre direction have been defined from experimental

data. In order to perform fluid–structure interaction, it is required for the valve model to be immersed

in a fluid domain, which has been defined here as a cuboid surrounding the valve complex (Figure 1.22).

Coupling of the valve geometry to the resulting fluid flow was performed using a constrained accelera-

tion and velocity method. The key parameters of this model are listed in Table 1.11.

In this model valve closure has been simulated by applying experimental measurements of the haemo-

dynamic pressure to the atrial and ventricular portions of the fluid domains over a period of 150 ms. The

simulated flow rates and regurgitant volumes of the base model are in agreement with in vitro experi-

mental data from a left heart simulator. In order to assess the effect of different haemodynamics loads on

the acoustic radiation, the maximum amplitude of the pressure and the time derivative have been scaled

and the difference in acoustic pressure assessed. The acoustic radiation has been evaluated by sampling

of the simulated pressure above the valve and from the normal velocity of the belly region of the anterior

and posterior leaflets. In close proximity to the source the acoustic radiation from the velocity and the

pressure are in phase, thus the sampling of the two leaflets will show how each contributes of the first

heart sound. The results of these simulations show that the amplitude to the acoustic radiation is lin-

ear with both increases in amplitude and time derivative of the pressure. However the frequency of the

radiation was shown to be non–linear with respect to both amplitude and the time derivative, increas-

ing steeply then stabilising. This behaviour is attributed to the material properties of the leaflets which

stiffen more rapidly with increases time derivatives, reducing the deformation and thus the acoustic ra-

diation. From assessing the normal velocity of the two leaflets, it is shown majority of the acoustic power

generated in these cases are from the anterior leaflet. However once the two leaflet coapt the points of

maximum acoustic radiation shift to the commissural areas.

The model described above has also been used to examine the effect of microstructural variation in

the leaflets upon valve function, mimicking dysfunctional changes in leaflet structure linked to degener-

ation [96]. Using the same continuous material model described previously, the effect on valve function
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Table 1.11: Structural and fluid properties used in Einstein et al. [76].

Variable Value
Structural density [kg mm−3] 1.04×10−6

Structural bulk modulus [kPa] 2.5×104

Fluid density [kg mm−3] 1×10−6

Fluid dynamic viscosity [kg mm−1 s] 0.045
Fluid bulk modulus [kPa] 2.5×104

Figure 1.22: 3D geometry of the fluid structure interaction model of Kunzelman and et al. [98].

from independent variation in the fibre volume fraction, fibre stiffness, fibre splay and matrix stiffness

have been assessed. Fitting the reference material model to biaxial stress–strain data, these parameters

have been perturbed independently and the effect on regurgitant flow, coaptation time, leaflet stress

and accoustic radiation have been assessed. As before, valve closure has been simulated from applying

the haemodynamic load to the fluid volume and the resulting flow has been coupling to the structure of

the valve.

Changes in the microstructure that maintain the anisotropy of the leaflet do not impact upon the

function of the valve. However changes that affect the anisotropy of the leaflets have a significant af-

fect upon the function of the valve, causing regurgitation of the blood and tenting of the leaflets during

closure. Increasing isotropic matrix stiffness was found to increase coaptation time, such that at large

values the valve was unable to close and the valve was regurgitant. Reduction in the acoustic radiation

peak frequency was also observed with increasing matrix stiffness. Changes in the volume fraction of

the collagen were found not to alter the flow rates significantly, with regurgitant volumes decreasing and

increasing in response to increasing and decreasing volume fractions. The peak stresses were found to

increase with increasing volume fraction and to decrease with decreasing volume fraction, however the

stress distribution exhibited in both cases were similar to the normal model. When considering the two

leaflets combined, the acoustic radiation peak frequency was shown to decrease; however when each

leaflet was analysed individually it was found that both increases and decreases in the the volume frac-

tion decreased the individual acoustic radiation peak frequency. Changes in the collagen fibre stiffness

did not change transmitral flow rates significantly, however the peak principle stresses were increased

and decreased with increasing and decreasing fibre stiffness respectively. These changes did not affect

coaptation of the valve, however the peak frequency of the acoustic radiation was found to vary non–

linearly with increasing fibre stiffness; at low values of stiffness the increase in peak frequency was found
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to rise rapidly, flattening at higher values of stiffness. Variation in the degree of fibre splay caused pro-

nounced changes in the peak stress, with increases in the splay of the collagen fibres leading to a more

uniform distribution of stress in the bellies of the two leaflets. Conversely, decreases in the degree of

splay increased the peak stress significantly with the peak stresses shifted to the strut chordae and the

free margins of the leaflets. Decreases in the splay also resulted in transmitral regurgitation of the flow

and billowing of the leaflets during closure of the leaflets. The peak acoustic frequencies were found to

increase in the posterior leaflet with increase splay, however the peak frequencies in the anterior leaflet

and acoustic pressure decreased in cases of increased and decreased fibre splay.

1.5.4 Surgical applications

Models of the mitral valve have also been used to simulate surgical techniques in order to understand

the functional changes between a dysfunctional and repaired valve.

Chordal replacement

The functional effect on the stress state of the valve in the case of chordal rupture where a native chor-

dae is replaced with a stiffer artificial substitute has been addressed in a series of finite element studies

[99, 100, 101]. Described using shell elements and the same linear elastic anisotropic material model

as described previously in Section 1.5.3, closure of the mitral valve has been performed using the struc-

tural solver ANSYS. Simulations of the normal valve have been compared to a dysfunctional and repaired

states, where several chordae have been first removed then replaced with stiffer substitutes. The results

of these simulations show that in the dysfunctional state of chordal rupture the principal stresses are

comparable to the normal state, however the posterior leaflet is displaced further towards the annulus

than in normal states. Replacement of the chordae with a stiffer artificial substitutes restores the magni-

tude of the principal stress to the normal state however stress concentrations are induced at the location

of the chordae due to a mismatch in stiffness. These localised peaks have been shown to be minimised

by increasing the number of artificial replacements.

Annuloplasty

The functional effect annuloplasty on the stress state of the valve in cases where annular dilation re-

quires the implantation of an annular ring has been examined in independent numerical studies [88,

102]. Using an anisotropic linear elastic model, the effect of ring annuloplasty on the dynamics of a

valve with a dilated mitral annulus have been simulated in a structural only model [88]. As annuloplasty

directly affects the motion generated from the structural contraction of the heart, the motion of the an-

nulus has been prescribed in this model using a linear time dependent force on the posterior segment

of the annulus. Implemented using the structural solver ANSYS, closure of the valve has been simulated

with both rigid and flexible ring annuloplasty have been performed with the results compared against

a simulation of an uncorrected dilated valve. The application of the flexible ring was found to return

stresses and the dynamics of closure closer to the levels of the normal scenario than the rigid annulo-

plasty ring.

In a separate study based upon earlier anisotropic linear elastic models, the functional effect of

two different designs of annuloplasty ring have been examined [102]. Implemented in the structural

solver ABAQUS using shell elements, this model utilises the same valve geometry as previous versions

but includes updated definitions for the anisotropic material properties of the two leaflets. In order

to simulate correction of dysfunction, the model was first put into a dysfunctional state by displacing

the papillary muscles by 1/3/5 mm away from the annular plane. Simulated application of planar and

non–planar annuloplasty rings was then performed by displacing the annulus to conform with the ring

profile. In order to assess the difference between different size mitral valve orifices, three different diam-
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eter annuloplasty rings and valve geometries have been assessed. From comparisons of the regurgitant

areas in each model it was found that both rings reduced the value of the regurgitant area, with the

non–planar annuloplasty ring reducing the size of the area more than the planar ring in all three sizes.

Another measure of the effectiveness, the length of leaflet coaptation at the free margin, was found to

increase with the non–planar ring. However the value of peak stress was found to be higher in the non–

planar ring at large values of papillary muscle displacement (5 mm), at the lower values (1 mm and 3

mm) the induced stresses were similar in magnitude.

Percutaneous balloon inflation

The functional effect upon the mitral valve from the dynamic effect of percutaneous balloon inflation in

stenosed mitral valves has been examined in single and double balloon configurations in a numerical

model by Schievano et al. [103]. Geometrically derived from the fluid–structure interaction model by

Einstein et al. [76], this model has been implemented in the structural–only solver of LS–DYNA. The

leaflets of the valve have been modelled as a linearly elastic anisotropic material which interact with

a single/double balloon object which is inflated and presses against the valve structure (Table 1.12).

The results of this model have shown that the double balloon method imparts a more uniform stress

distribution on the valve during deployment compared to a single balloon, which is less likely to damage

the leaflets of the mitral valve.

Table 1.12: Linear orthotropic structural properties used in Schievano et al. [103]. Labels: Ex – elastic modu-
lus in the fibre direction and Ey – elastic modulus in the off–fibre direction.

Leaflet Anterior Posterior
Ex [MPa] 6.233 2.080
Ey [MPa] 2.350 1.887

Poison ratio [–] 0.45 0.45
Shear modulus [MPa] 1.369 0.694

Density [kg·mm−3] 10.4×10−6 10.4×10−6

Edge–to–edge repair

The functional effect of the edge–to–edge surgical repair, a technique which used to correct regurgi-

tant valves, has been examined independently in several different models [95, 104, 105]. Correction of

prolapse is accomplished by directly connecting the prolapsing leaflets together with a suture, there-

fore minimising the intersegment distance during opening which ensures improved copatation during

closure (Figure 1.23). However as this restricts the valve during opening and reduces the effective/geo-

metric orifice areas, this repair alters the stress of the valve during diastole. The models listed here are all

structural–only models and as such there are no fluid–structure interaction of the edge–to–edge repair.

(a) Double orifice. (b) Single orifice.

Figure 1.23: Illustration of the the edge–to–edge repair technique, with a (a) double and (b) single orifice.
Image after Dal Pan et al. [104]
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The first study of this surgical correction modelled the effect of the suture has been by constraining

several nodes to act in synchrony, effectively joining the nodes together [95]. Implemented in the struc-

tural solver ABAQUS, the leaflets have been discretised using shell elements defined with anisotropic

linear elastic properties. The effect of the edge–to–edge has been examined by varying the suture length

in a family of models with different levels of annular dilation. Systole and diastole have been simulated

by applying of a uniform transvalvular pressure of 120 mmHg and 15 mmHg respectively. The results of

the simulations (without the valve correction) showed that under the application of the systolic pressure

the valve was not able to close, however this was attributed to the linear elastic properties and complex

valve geometry. With the application of the surgical suture to the model it was found that the princi-

pal stresses at systole did not differ significantly from correct to uncorrected model. However during

diastole the peak principal stresses in the corrected model were found to be similar in magnitude to the

uncorrected model in systole, which essentially double the frequency of systolic loading during each

cardiac cycle.

More recently non–linear hyperelastic models of the edge–to–edge repair technique have been re-

ported [104, 105]. Using a hyperelastic non–linear material model, the effect of the lateral suture posi-

tioning, length of the suture and severity of annular dilation have been examined. Both models have

been implemented in the structural solver ABAQUS and use shell elements defined with an isotropic

Mooney–Rivlin material model which has been fitted to the myxomatous mitral valve biomechanical

data. These models have been defined with the leaflet in a semi–closed configuration, with the free

margin of the leaflet constrained simulating the effect of a suture. Dysfunctional states have been gen-

erated by scaling the dimension of full valve to model annular dilation. Simulation of diastole has been

performed in structural–only simulations, with the transvalvular pressure drop derived by Redaelli et al.

[106] using an orifice area based relationship determined from a fluid–only model of the edge–to–edge

repair. Results of these simulations have shown that the lateral positioning and length of the suture

both have a positive effect in reducing the magnitude of stress induced. Both models also show that the

uncorrected dilation of the annulus in a simulated dysfunctional state result in a higher value of stress

during diastole.

1.5.5 Valveless models

The heart valves assist in the pumping of blood in the left ventricle, however all of the models presented

in Section 1.5.3 have not addressed the dynamics of ventricular filling. Several different authors have

addressed the fluid dynamics of this problem, with the effect of the valves modelled using a variety of

different methodologies. The majority of the left ventricular models existing in literature model only the

ventricular chamber and have neglected the full, three dimensional, coupled dimensional representa-

tion of the valves. The only work, to the the author’s knowledge, which has attempted to address this

issue are the immersed boundary method models of McQueen and Peskin [107] and McQueen et al.

[108]. However the structural models of the valves are simplified by representing the valve as a network

of fibres and not a continuous material. These techniques are also not able to handle self–contact con-

ditions and thus are limited to diastole only. A review of this area of research is outside the scope of this

work, however one example of this field has been selected in order to summarise efforts in fluid–only

modelling of the the mitral valve and its role in ventricular filling.

Using a fluid–only model, the fluid dynamics in the ventricular chamber during the cardiac cycle

have been modelled in order to examine the dynamic of filling into a expanding volume [109]. Volumet-

ric changes in the ventricular chamber have been modelled by prescribed displacements of the bound-

ary positions determined from in vivo measurements from a human subject with the mapped mesh of

the ventricle expanding and contracting as required. Using a non–Newtonian description of the fluid

viscosity to represent the properties of blood, the numerical solution of the Navier–Stokes equations

of fluid motion have been resolved on a moving mesh using the arbitrary Lagrangian–Euler method in
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the computation fluid dynamics code Star–CD. The valves have been modelled as two–dimensional ori-

fices at the inlet and outlet of the model, opening and closing of the valves was modelled by variation

of the effective orifice area throughout the simulation. In order to better represent the fluid interaction

of the valve, an intermediate area around the orifice centre was defined where the resistance to flow

was non–zero (see Figure 1.24). The value of this non–zero pressure drop was selected by comparison

of the numerical values of the flow rate to experimental measured values at both the aortic and mitral

positions. The effect of the leaflets of the mitral valve on the flow have been neglected, with the ante-

rior leaflet in particular assisting the directionality of the fluid flow before entering the left ventricular

outflow tract, a fact acknowledged by the authors themselves. Analysis of the numerical results have

shown that the model presents with flow rotation and velocities similar to those measured in vivo for

the purpose of this study.

Figure 1.24: Two dimensional representation of the aortic and mitral valves in the model of Schenkel et al.
[109]. The black areas represents a no flow boundary, the grey a transition pressure drop (defined by the
authors) and the white a zero pressure drop.
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Chapter 2

Mitral Valve Model

Contained within this chapter is an in–depth review of the methods used to model valve function in the

proceeding chapters. Although sharing common features, the exact details of the model in each chapter

have been tailored towards the specific aim of the chapter itself. These three models are referred to as:

(1) Isotropic – Introduced in Chapter 3, the aim of this model was to examine the effect of haemo-

dynamic loading differing fluid volumes and also between structural–only and fluid–structure

interaction methods. For this reason the material properties of the valve have been simplified

and represented as isotropic and linearly elastic.

(2) Orthotropic – Introduced in Chapter 4, the aim of this model was to examine the effect of a

corrective surgical procedure on valvular stress state and the corresponding fluid dynamics. For

this reason the material properties of the valve leaflets was updated to an orthotropic material

definition.

(3) Hyperelastic – Introduced in Chapter 5, the aim of this model was to examine changes in the

microstructure of the valve in response in scenarios of remodelling and growth. For this reason

the material model of the valve leaflets was updated to a hyperelastic fibre based definition.

Divided between structural and fluid aspects of the mitral valve model, this chapter begins with a

comparison of the main differences in terms of the the valve geometry (Section 2.1) and material defini-

tions of the leaflet and chordae (Sections 2.3.1 and 2.3.2). Following this is a comparison of the different

fluid geometries (Section 2.2.1) and the material model used to represent the fluid (Section 2.3.3) Also

included are details of the different aspects used in the numerical simulation of the structural dynamics

(Section 2.4.1) and fluid dynamics (Section 2.4.2).

2.1 Valve model geometry

As in reality, the models presented here all contain the four different subcomponents of the mitral valve,

the geometry of which are based upon a mixture of in vivo and ex vivo measurements reported within

the literature. In this section the differences between the three models are compared against each other.

2.1.1 Annulus

Although the annulus is a dynamic substructure of the valve, here the geometrical form of the annulus

has been constricted to a fixed planar geometry in order to reduce the numerical complexity of the prob-

lem. The profile of the annulus has been defined as D–shaped orifice, which was selected to represent

the configuration of the valve during systole (Figure 2.1). This profile has been used in the isotropic,

orthotropic and hyperelastic models.
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Since the annulus is fixed, as in the case of annuloplasty, the ratio of the anteroposterior and com-

missural diameters has been based upon the design of the “Carpentier–Edwards Physio Annuloplasty

Ring”1. Reported as 4:3, here the commissural and anteroposterior diameters are defined as 30.0 mm

and 22.5 mm respectively. The resulting annular perimeter and area are measured as 86.7 mm and 554

mm2 respectively, with the enclosed annular area in agreement with the reported range at systole (Table

1.7).
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Figure 2.1: Planar profile of the valve annulus which is defined as symmetrical in the anteropostero axis. The
anteropostero and commissural diameters are defined as 22.5 and 30.0 mm respectively.

2.1.2 Leaflet profile

In all three models the leaflets have been modelled as a continuous band of tissue that extends outwards

from the annulus. Attachment to the annulus is divided into anterior and posterior segments scaled

from anatomical measurements to the model annulus described in the previous section [19, 11]. How-

ever the three models differ in the profile used to represent the leaflets, as the meshes generated from

the resultant geometries were found to be unstable when applied to more advanced material models

(see Section 2.1.5). Here the different leaflet profiles used in the isotropic, orthotropic and hyperelastic

models are presented as shown in Figure 2.2.

Isotropic model

In the isotropic model the leaflets have been represented using a scalloped profile for the anterior, pos-

terior and commissural regions (Figure 2.2). Using the anteropostero/symmetry axis as the geometric

reference point, the annular extent of the individual cusps are defined using the same annular propor-

tions as the human anatomical data reported by Sakai et al. [19]. The peak of each cusp is defined by its

maximal height at the centre of its annular portion which is also taken from the anatomical data, also

reported by Sakai et al. [19]. The undulating free margin of the leaflet profile is then define by fitting

a B–spline through these points. Using this B–spline curve and the annular profile, the surface area of

the leaflets is formed from fitting a Coons patch to the region contained between these two lines (Figure

2.3). The total leaflet areas is measured as 936 mm2 with the anterior and posterior contributing 444 and

492 mm2 respectively (Table 2.1).

1http://ht.edwards.com/resourcegallery/products/rings/pdfs/2188update.pdf
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Orthotropic model

In the orthotropic model the leaflet profile has been simplified by combining the commissural cusps

with the closest posterior cusp (Figure 2.2). As in the isotropic model the annular extent of the individual

cusps are defined using the same annular proportions as the human anatomical data reported by Sakai

et al. [19]. In this model the peak of each cusp is defined by its maximal height at the centre of its annular

portion taken from the porcine anatomical data reported by Kunzelman et al. [11]. As previously the

undulating free margin of the leaflet profile is defined by fitting a B–spline through these points and the

surface area is formed from a Coons patch of the region contained between this line and the annulus

(Figure 2.3). The total leaflet areas is measured as 912 mm2 with the anterior and posterior contributing

414 and 498 mm2 respectively (Table 2.1).

Hyperelastic

In the hyperelastic model the leaflet profile has been further simplified by representing the multiple

cusps of the posterior leaflet as a single cusp (Figure 2.2). Here the annular extent of the anterior and

posterior cusps are defined using the same annular proportions as the porcine anatomical data reported

by Kunzelman et al. [11]. As in the orthotropic model, the peak of each cusp is defined by its maximal

height at the centre of its annular portion taken from the porcine anatomical data reported by Kunzel-

man et al. [11]. As before, the undulating free margin of the leaflet profile is defined by fitting a B–spline

through these points and the surface area is formed from a Coons patch of the region contained between

this line and the annulus (Figure 2.3). The total leaflet areas is measured as 872 mm2 with the anterior

and posterior contributing 412 and 460 mm2 respectively (Table 2.1).
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Figure 2.2: Comparison of the isotropic, orthotropic and hyperelastic model leaflet profiles against the cir-
cumferential distance from the centre of the posterior leaflet. Note that only half the leaflet profile is shown
here as the profile is symmetrical.
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Figure 2.3: Three–dimensional comparison of the isotropic, orthotropic and hyperelastic models. As the models are all symmetrical, only half the geometry in each model is shown.
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Table 2.1: Comparison of the leaflet areas in the isotropic, orthotropic and hyperelastic models. Note that in
the isotropic model the commissural areas are included in the posterior areas.

Leaflet areas [mm2]
Model Anterior Posterior Total

Isotropic 444 492 936
Orthotropic 414 498 912
Hyperelastic 412 460 872

2.1.3 Chordae tendineae

In the different models a variety of different chordal arrangements have been used to support the valve

during closure, the chordae used in each model are listed in Table 2.2. The configuration of the chordae

tendineae network has been defined to allow proper coaptation under physiological conditions and to

also minimise numerical instabilities generated by distortion of the mesh. In all models the geometry

of the chordae branches before attaching to the leaflet surface, at each bifurcations the current area of

each chordae is conserved over the number of branches such that Apostbranch = Aprebranch/N where N is

the number of divisions.

Table 2.2: Comparison of the different chordal classes in the isotropic, orthotropic and hyperelastic models

Chordal class
Model Marginal Basal Strut

Isotropic 2� � �
Orthotropic 2� 2� �
Hyperelastic 2� 2� 2�

Isotropic model

In the isotropic model only the marginal chordae, which support the free margins of the leaflets, have

been represented (Figure 2.4). The structures emit from the papillary muscle node and subsequently

branch out as they approach the free margin of the leaflets where they ultimately attach to the leaflet.

The chordae have been distributed equally in order to support the leaflets in closure and to prevent

mesh instabilities.

Orthotropic model

In the orthotropic model the marginal chordae have been supplemented with the basal chordae, as both

the free margins and the basal regions of the leaflets are supported (Figure 2.4). As before the chordae

emit from the papillary muscle after which they split and branch before connecting the surface of the

leaflets. The chordae have been distributed equally in order to support the leaflets in closure and to

prevent mesh instabilities.

Hyperelastic model

In the hyperelastic model, in conjunction with the marginal and basal chordae, the valve is supported

by the strut chordae which is inserted into the centre of the anterior leaflet (Figure 2.4). As in both the

isotropic and orthotropic models, the chordae emit from the papillary muscle and split before connect-

ing with the leaflet surface. The chordae have been distributed equally to support the leaflets and to

prevent mesh instabilities, with the exception of the strut chordae which is a singular structure.

2.1.4 Papillary muscle

In all three models the structure of the papillary muscles have been represented as a single tip, to which

the chordae are attached to (Figure 2.4). These tips have been modelled as static, as in vivo measure-
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Figure 2.4: Comparison of the chordal attachments in the isotropic, orthotropic and hyperelastic models as
viewed from the ventricular side of the valve. The chordae are shown to initiate at the papillary muscle tip,
before branching and subsequently inserting into the leaflet surface. Here the leaflets have been illustrated
as translucent in order to aid visualisation of the chordae. Note that only half the model is shown here as the
geometry is symmetrical.

ments indicate that the distance between the tip and the annular plane remains constant throughout

the cardiac cycle. As the model is symmetrical, the location of the papillary muscle tip is mirrored in the

anteropostero plane.

Isotropic model

The location of the papillary muscle tips in the isotropic model has been defined using the measure-

ments reported by Sakai et al. [19]. Using the distances relative to the left and right fibrous trigones

on the annulus, the location of the papillary muscle tip has been defined as 22 mm above the plane of

the annulus. The lateral position of the papillary muscle has been adjusted in order to ensure correct

coaptation and to minimise numerical instabilities during closure.

Orthotropic model

The location of the papillary muscle tip in the orthotropic model has been defined in the same manner

as the isotropic model. However the vertical height of the papillary muscle tip has been reduced to 20

mm in correspondence with the reduction in leaflet height (Section 2.1.2). This value corresponds to

measurements reported in vivo from normal porcine samples [110].

Hyperelastic model

The distance between the muscle tips in the hyperelastic model has been defined using in vivo mea-

surements from normal porcine subjects reported by Jensen et al. [110]. This interpapillary distance has

been scaled relative to the commissural diameter using the in vivo measurements in which the distance

between the papillary muscles is measured as 23±1 mm, with a commissural diameter of 33±1 mm.

Using a ratio of 0.7, the interpapillary distance has been defined ranging from 19.5 mm to 21.0 mm.

The vertical height of the papillary muscle tips has been set as 20 mm, following the same set of in vivo

measurements. The positioning in the anteroposterior direction was adjusted in order to ensure correct

coaptation and minimise numerical instability during closure.
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2.1.5 Finite element meshes

In order to solve the equations of motion, the geometry of the valve must be first discretised into a suit-

able mesh of elements and nodes. Here the leaflets have been discretised using a structured approach,

dividing the surface area into a series of 4–node rectangular elements (Figure 2.5). Defined as a three–

dimensional line, here the chordae tendineae have been discretised using 2–node beam elements. All

the meshes described in this work have been prepared using the software package ANSYS Release 11.0.

Figure 2.5: Comparison of structured and unstructured approaches to meshing. Here the element size pa-
rameter selected is the same, in the structured approach the area is defined as a quadrilateral and the op-
posing line segments (a/c and b/d) are defined with equal number of divisions and the elements are formed
from the resulting line intersections. In an unstructured approach the area is divided into many triangular
elements which satisfy the sizing parameter, as shown here the edges a and c contain a different number of
divisions when compared to the structured case.

Isotropic model

In the isotropic model the leaflets are represented using 2688 shell elements in total, with 896 in the

anterior leaflet and 1792 in the posterior/commissural leaflets (Figure 2.6). The marginal chordae are

represented using 333 beam elements in total.

Orthotropic model

In the orthotropic model the leaflets are represented using 4000 shell elements in total, with 1600 in the

anterior leaflet and 2400 in the posterior/commissural leaflets. Updated with an orthotropic material

model, it was found that the previous isotropic mesh was no longer adequate as numerical instabilities

were generated when using this mesh. By reducing the elemental skew at the commissural regions of

the leaflets, these instabilities were stabilised (Figure 2.6). In total the chordae are represented using

1663 beam elements with 670 marginal and 993 basal chordal elements.

Hyperelastic model

In the hyperelastic model the leaflets are represented using 3920 shell elements in total, with 1680 in

the anterior leaflet and 2240 in the posterior/commissural leaflets. As with the orthotropic model it was

required to further reduce the elemental skew at the leaflet junction between the anterior and posterior

leaflets (Figure 2.6). In this model the chordae have been represented using 292 beam elements with

143 marginal, 143 basal and 6 strut chordal elements. The number of beam elements is significantly

smaller in the third generation model as the mesh used to define the chordae has been simplified. In

the isotropic and orthotropic models the chordae have been defined using multiple elements, whereas
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Figure 2.6: Comparison of the isotropic, orthotropic and bluehyperelastic model meshes and the elemental skew in the commissural regions.
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in the hyperelastic model this has been simplified to a single beam up to the point where the chordae

branch.

2.2 Fluid domain model

2.2.1 Geometry

In order to simulate the haemodynamic environment of the valve, it is required to immerse the valve in

a suitable fluid volume. Here the geometrical details of the different fluid volumes used in this work are

described.

2.2.1.1 Isotropic model

Used to assess the geometric effect upon diastolic filling and systolic closure, the isotropic model con-

tains both a tubular and a ventricular shaped fluid volume (Figure 2.7). These volumes have been sized

based upon the total volume of the heart, 120 ml. The size of the ventricle has been taken as the av-

erage between diastole and systole, 85 ml. The atrium forms the remaining 35 ml. The only difference

between the tubular and ventricular models is the aortic outflow.

LA

LV

LA

LV

AO

Figure 2.7: Comparison of the ventricular and tubular fluid volumes used in the isotropic model. Label: LA –
left atrium, LV – left ventricle and AO – aortic outflow.

2.2.1.2 Orthotropic models

In the orthotropic model two different model geometries have been used with the linear and non–linear

variants of the valve model.

Linear

Used in the analysis of steady flow conditions, the fluid volume used in the linear orthotropic model

is a semi–infinite chamber (Figure 2.8). The dimensions of the ventricular outflow section have been

defined by using an accompanying valveless computation fluid dynamic simulation. Here the outflow

width has been defined from the point at which the ratio of the velocity magnitude to the maximum

fluid velocity was reduced to less than 1% (results not shown). As in the isotropic model, the left atrium

has been sized as 35 ml.
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LV

LA

Figure 2.8: Semi–infinite fluid volumes used in the linear orthoropic model. Here the infinite boundaries are
marked with a blue broken line. Label: LA – left atrium and LV – left ventricle.

Non–linear

Used in the analysis of diastolic filling, the fluid volume used in the non–linear orthotropic model has

been defined as a ventricular shaped fluid volume (Figure 2.9). Using the same sizing principals as the

isotropic model (left ventricle = 85 ml, left atrium = 35 ml), here the fluid volume has been modified

to reduce the level of element skew in order to maximise the element size, and therefore the maximum

permitted time step (see Equation 2.23).

Figure 2.9: Comparison of the ventricular fluid volumes used in the isotropic (left) and orthotropic non–
linear (right) models. Label: LA – left atrium, LV – left ventricle and AO – aortic outflow.

2.2.2 Finite element meshes

All the fluid meshes have been created using a structured meshing method (see Figure 2.5 for the two–

dimensional analogue). This is a requirement of the fluid dynamic solver used in LS–DYNA (see Section

2.4.2.1)

Isotropic model

The tubular and ventricular volumes contain of 81,920 and 43,008 solid elements respectively (Figure

2.10). These element density of these models has been determined by dividing each solid element into

eight further elements (similar to the shell element division in Figure 2.19). The mesh density has been
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assessed by applying a velocity boundary condition to the inlet of each model equal to 1 m·s−1. The

subsequent variation in velocity across the valve plane (without the valve) has been measured and the

mesh deemed sufficiently refined when the difference between the maximum magnitude of the fluid

velocity became less than 5%. Note that the orifice has been embedded into the mesh design.

Figure 2.10: Comparison of the ventricular and tubular isotropic model fluid meshes.

Orthotropic model

The fluid mesh used in the linear orthotropic model consist of 23,200 solid elements (Figure 2.11). Using

the mesh density increasing approach described above, the mesh density has been assessed by applying

a velocity boundary condition to the inlet equal to 1 m·s−1. As in the previous isotropic model, the

variation in velocity across the valve plane (without the valve) has been measured and the mesh deemed

sufficiently refined when the difference between the maximum magnitude of the fluid velocity became

less than 5%.

The non–linear orthotropic model geometry described previously has been meshed in two sepa-

rate approaches, defining a normal and dysfunctional state of the valve (see Section 4.3.4, Page 111).

However the geometry/volume remains constant in both cases, here only the normal meshed volume

has been presented (Figure 2.11). The normal and dysfunctional fluid volumes consisted of 20,430 and

30,618 solid elements respectively. Using the approach described above, the mesh density has been

assessed by applying a pressure boundary condition corresponding to the maximum value sustained

during diastole (∼1 kPa).

2.3 Material models

2.3.1 Leaflet material models

In this section the different material models used to represent the leaflets in the isotropic, orthotropic

and hyperelastic models are described in further detail. Defined with linear and non–linear elastic mod-

uli, a mixture of standard and custom material models have been implemented in the finite element

solver LS–DYNA (Table 2.3).
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Figure 2.11: Comparison of the linear (left) and non–linear (right) orthotropic fluid volumes. Here only the
normal non–linear orthotropic fluid mesh has been visualised, for the dysfunction fluid mesh refer to Figure
4.7 on Page 113.

Table 2.3: Comparison of the key features of the different material models used to represent the leaflets.

Model Linear Non–linear Standard Custom
Isotropic 2� � 2� �

Orthotropic � 2� 2� �
Hyperelastic � 2� � 2�

2.3.1.1 Isotropic model

In the isotropic model the leaflets have been defined as isotropic and linearly elastic. As the focus of

this model was to determine the difference between structural–only and fluid–structure interaction ap-

proaches, it was chosen to approximate the material behaviour of the leaflets with the simplest possible

material model. This has been implemented within LS–DYNA using the standard material model MAT_

ELASTIC in conjunction with the Belytschko–Lin–Tsay finite element shell with three integration points

in the thickness direction (Table 2.4) [79, 80].

Table 2.4: Material parameters for the isotropic model. Labels: E – elastic modulus, ν – Poisson’s ratio and t
– shell thickness.

Leaflet
Variable Anterior Posterior
E [MPa] 3.0 3.0
ν [–] 0.45 0.45

t [mm] 0.75 0.75

2.3.1.2 Orthotropic model

In the orthotropic model the leaflets have been defined orthotropic with both linear and non–linear

material properties. As the focus of this model was to determine the effect of a fluid load upon the

mitral valve in a corrected state, it was required to use a more advanced material model to represent the

leaflets than the isotropic model described previously.

Linear

The linear orthotropic material model has been implemented in LS–DYNA using the standard material

model MAT_ORTHOTROPIC_ELASTIC in conjunction with the Hughes–Liu finite element shell, defined

with a single integration point in the thickness direction. The in–plane (x/y) properties of the leaflets
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have been defined from a previously reported finite element study reported by Votta et al. [102]. Al-

though the out–of–plane (z) response is uncoupled from the in–plane (x/y) response of the material, the

elastic and shear moduli in the out–of–plane direction are still required in this material model. Used

in the calculation of the contact force calculation with both the structure and the fluid, this value has

been defined in conjunction with the contact stiffness to minimise numerical leakage in fluid–structure

interaction scenarios (Table 2.5).

Table 2.5: Material parameters for the linear orthotropic model, here the x– and y–directions refer to the
circumferential and radial directions respectively. Labels: Ex – circumferential elastic modulus, Ey – ra-
dial elastic modulus, Ez – out–of–plane elastic modulus, Gx y – circumferential/radial shear modulus, Gy z

– out–of–plane shear modulus, Gz x – out–of–plane shear modulus, νx y – in–plane Poisson’s ratio and t – shell
thickness.

Leaflet
Variable Anterior Posterior
Ex [MPa] 6.2 2.4
Ey [MPa] 2.1 1.8
Ez [MPa] 10.0 10.0

Gx y [MPa] 1.4 0.7
Gy z [MPa] 1.4 0.7
Gz x [MPa] 1.4 0.7
νx y [–] 0.45 0.45
t [mm] 1 1

Non–linear

The non–linear orthotropic material has been implemented in LS–DYNA using the standard material

model MAT_NONLINEAR_ORTHOTROPIC in conjunction with the Belytschko–Lin–Tsay finite element

shell, defined with a single integration point in the thickness direction. In this material model the non–

linear behaviour must be pre–defined by the user, here the in–plane non–linear stress–strain response

has been defined using the experimental data reported by May-Newman and Yin [54] (Figure 2.12). Al-

though non–linear in the plane of the material, as in the case of the linear model this material model re-

quires the input of the out–of–plane elastic and shear moduli in order for the contact force calculation.

As before in the linear model, these values have been defined in conjunction with the contact stiffness

in order to minimise numerical leakage in fluid–structure interaction scenarios (Table 2.6). Based upon

a finite–strain formulation, this material model is reported in the user manual as unstable and is not

recommended for general use [80, 79].

Table 2.6: Additional parameters of the orthotropic material model, here the x– and y–directions refers to
the circumferential and radial directions respectively. Labels: Ex – circumferential elastic modulus, Ey –
radial elastic modulus, Ez – out–of–plane elastic modulus, Gx y – circumferential/radial shear modulus, Gy z –
out–of–plane shear modulus, Gz x – out–of–plane shear modulus, νx y – in–plane Poisson’s ratio and t – shell
thickness.

Leaflet
Variable Anterior Posterior
Ex [MPa] 17.1 5.6
Ey [MPa] 6.7 3.4
Ez [MPa] 20.0 20.0

Gx y [MPa] 1.37 1.37
Gy z [MPa] 1.37 1.37
Gz x [MPa] 1.37 1.37
νx y [–] 0.45 0.45
t [mm] 1 1
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Figure 2.12: Comparison of the stress–strain curves used to define the circumferential and radial elastic mod-
uli in the orthotropic material model. Here the experimental data of May-Newman and Yin [54] is represented
using the following figure labels: # – anterior circumferential, Í – anterior radial, – posterior circumferen-
tial and Î – posterior radial.

2.3.1.3 Hyperelastic model

In the hyperelastic model the leaflets have been represented using a hyperelastic, anisotropic, non–

linear, discrete fibre material model. As the focus of this model was to determine the effect of remod-

elling and growth upon the dynamics of the valve, it was required to use a material model that included

microstructural aspects such as the fibre orientation. Using the strain–energy function described previ-

ously in Section 1.4.3, a material model has been implemented in LS–DYNA using a user defined sub-

routine in conjunction with the co–rotational Hughes–Liu finite element shell, defined with a single

integration point in the thickness direction. The numerical implementation of this particular material

model has described in further detail in the following section.

Although non–linear in its in–plane response, this material model requires the input of the bulk and

shear moduli for the calculation of both the contact force and timestep size (Table 2.7).

Table 2.7: Additional parameters of the hyperelastic material model. Labels: K – bulk modulus, G – shear
modulus and t – thickness.

Leaflet
Variable Anterior Posterior
K [MPa] 100 100
G [MPa] 50 50
t [mm] 1 1

Numerical implementation

The hyperelastic, non–linear, anisotropic, discrete fibre material model described previously in Section

1.4.3 has been implemented following the numerical approach reported by Einstein et al. [78]. Defined
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in LS–DYNA through a user defined material subroutine, the FORTRAN77 source code for this user de-

fined material model can be found in the Appendix B.5. This material model has been implemented

using the co–rotational Hughes–Liu finite element shell. Reported as being computationally more effi-

cient [78], this particular element utilises a local coordinate system which rotates with the element as it

deforms (Figure 2.13 and Equation 2.1) [79, 80].

e1

e2

e3

n1
n2

n3

r21

n4

r31
r42

fibre angle

Figure 2.13: Illustration of the local basis of the co–rotational Hughes–Liu element, which is characterised
using two key vectors: the shell normal e3 and the local x–axis e3 (Equation 2.1). Here the fibre angle in
the deformed configuration is illustrated by the dashed line. Labels: n1 – first node, n2 – second node, n3

– third node, n4 – fourth node, r21 – vector connecting second and first nodes, r31 – vector connecting third
and first nodes, r42 – vector connecting fourth and second nodes, e1 – first orthonormal vector, e2 – second
orthonormal vector and e3 – third orthonormal vector.

e3 =
s3p

s3 · s3

s3 = r31× r42

e1 =
s1p

s1 · s1
(2.1)

s1 = r21− (r21 ·e3)×e3

e2 = e3×e1

From the co–rotational element it is possible to extract the in–plane incremental displacement gra-

dients ∆G, which defines the change in the incremental element displacement ∆u = [u 1, u 2, u 3]T with

respect to the current deformed coordinates y = [y1, y2, y3]T, at each time step (Equation 2.2). It is from

these incremental displacement gradients that the deformation gradient has been manually assembled.

As the material has been defined as a membrane, the out–of–plane components are uncoupled to the

in–plane components, i.e. ∆G13 =∆G23 =∆G31 =∆G32 = 0 (Equation 2.3).

∆G i j = ∂∆u i /∂ y j (2.2)

∆G=











∆G11 ∆G12 0

∆G21 ∆G22 0

0 0 ∆G33











=











∂∆u 1/∂ y1 ∂∆u 2/∂ y1 0

∂∆u 2/∂ y1 ∂∆u 2/∂ y2 0

0 0 ∂∆u 3/∂ y3











(2.3)

By definition the incremental displacement and deformation gradients are related through the iden-

tity tensor I (Equation 2.4). Modelled as an incompressible material, the incremental deformation gra-
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dient is defined as volume preserving (Equation 2.5).

∆F= I+∆G (2.4)

det∆F= 1 (2.5)

From this incompressibility constraint, the out–of–plane incremental displacement gradient can be

defined as a function of the in–plane increments (Equation 2.6).

∆G13 =
1

(∆G11+1)(∆G22+1)−∆G21∆G12
(2.6)

Calculation of the deformation gradient from the incremental deformation gradient is an additive

operation, as the incremental deformation gradient at the current time t is related to the deformation

gradient at time t by using the deformation gradient at some previous time t −∆t (Equation 2.7).

F(t ) =∆F(t ) F(t −∆t ) (2.7)

However in the co–rotational element, the incremental displacement gradients are returned in the

current co–rotational basis at the time t and are referred to as ∆G̃. It is required to rotate these incre-

mental displacement gradients back to the initial basis of the element before updating the deformation

gradient as detailed in Equations 2.4, 2.5 and 2.7 (Figure 2.14).

at time t=0

at time t

element deforms and 
local element basis 
rotates with element

incremental displacement gradients 
rotated from current co‐rotational 
basis back to the original basis

ΔG~

ΔG
θ

N

n = FN

Figure 2.14: At time t the incremental displacement gradients∆G̃ are given in the current co–rotational ba-
sis. In order to assemble the deformation gradient correctly, ∆G̃ gradient must be rotated by the angle θ
to give the incremental displacement gradient in the original basis ∆G. Labels: ∆G̃ – incremental displace-
ment gradients in co–rotational basis, ∆G – incremental displacement gradients in original basis, θ – angle
of rotation, N – initial x–axis vector and n – x–axis vector in the deformed configuration.

The angle θ through which the current element basis must be rotated back is determined directly
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using the deformation gradient (Figure 2.14). At t = 0, the local x–axis of each element is defined in the

initial elemental basis with the unit vector N= [1, 0, 0]T. At time t , following the deformation gradient F

the vector N has the deformed configuration n= F N which is also defined in the initial elemental basis.

n= F N=











n 1

n 2

0











=











F11 F12 0

F22 F22 0

0 0 F33





















1

0

0











=











F11

F21

0











(2.8)

The orientation of the vector n with respect to N gives the angle of rotation θ and is calculated by

taking the dot product of the corresponding normalised vectors (Equations 2.9 and 2.10).

|n|=
p

(FN)T ·FN=
p

NTFTFN=
p

C11 (2.9)

cosθ =
N ·n
|n|
=

F11
p

C11

(2.10)

The incremental displacement gradients in the current co-rotational basis ∆G̃ are rotated back to

the initial basis by using the rotation matrix Q (Equations 2.11 and 2.12).

Q=











cosθ −sinθ 0

sinθ cosθ 0

0 0 1











(2.11)

∆G=Q∆G̃QT (2.12)

Once in the initial basis, the incremental displacement gradient ∆G are used to calculate the in-

cremental deformation gradient and the corresponding deformation gradient at the time t (Equations

2.4 and 2.7). Using the deformation gradient F, the stress response of the material is evaluated using

the discrete fibre approach described previously in Section 1.4.3. Omitted here for brevity, the second

Piola–Kirchhoff stress tensor S is calculated as a function of the deformation gradient F and the chosen

strain–energy function (for more details see Pages 39 to 41). The second Piola–Kirchhoff stress tensor is

subsequently pushed forward to the Cauchy stress tensor σ using the deformation gradient (Equation

2.13).

σ= FSFT (2.13)

Defined in the initial elemental basis, it is required to rotate the Cauchy stress tensorσ stress back to

the current co–rotational basis in order to be consistent with the expected stress in LS–DYNA. Using the

same rotation matrix defined previously (Equation 2.11), the Cauchy stress tensor in the initial elemental

basisσ is rotated to σ̃ which is defined in the current co–rotational basis (Equation 2.14).

σ̃ =QTσQ (2.14)

In the co–rotational basis the transverse stresses σ13 and σ23 are updated using a Lagrangian ap-

proach. These stresses are calculated using the the value of stress in the previous time step σt−1
i j , the

current strain increments∆εt
i j and the transverse stiffness c (Equation 2.15).

σt
i j =σ

t−1
i j + c∆εn

i j where i=1,2 and j = 3 (2.15)

The complete process through which each element is processed is shown in Figure 2.15. Validation
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of this the correct calculation of F was performed by using the approach adopted by Einstein et al. [78],

in which the strain–energy function was changed to that of a Mooney–Rivlin membrane and the result-

ing dynamics of its inflation have been compared against its corresponding analytical solution (results

not shown). Numerical tests on the mitral valve strain–energy function are performed in the following

section.

Incremental displacement gradients returned in co–rotated basis∆G̃

Rotate incremental displacement gradients to original basis∆G=Q∆G̃QT

Calculate incremental deformation gradient∆F= I+∆G

Update deformation gradient F(t ) = F(t −∆t )∆F(t )

Update rotation matrix Q

Calculate second Piola–Kirchhoff and Cauchy stress tensors S andσ

Rotate Cauchy stress back to co–rotational basis σ̃ =QT∆σ̃Q

Update transverse stresses σ̃13 and σ̃23

Figure 2.15: Subroutine calculation flow.

Single element tests

Using the numerical implementation described above, the mitral valve strain–energy function described

by May-Newman and Yin [73] has been evaluated in a single element. Defined with the material param-

eters corresponding to the anterior leaflet (Table 2.8), the stress response has been calculated and com-

pared against the analytical solution. Here a range of different stretch scenarios (uniaxial/biaxial/shear)

have been evaluated (Table 2.8 and Figure 2.16).

Table 2.8: Anterior leaflet material parameters used in the single element tests. Labels: c0 – first material
parameter, c1 – second material parameter, c2 – third material paramaters, c – transverse shear stiffness, K –
bulk modulus, and G – shear modulus

Parameter Value
c0 [kPa] 0.399

c1 [–] 4.535
c2 [–] 1446.5

c [kPa] 500
K [MPa] 100
G [MPa] 50

Table 2.9: Description of the different single element tests performed in Figure 2.16. For the definition of the
associated deformation gradients and deformed configurations refer back to Equation 1.6 and Figure 1.18 on
Pages 39 to 40.

Figure Description Stretch range
Figure 2.16a Equal biaxial λ : 1→ 1.2
Figure 2.16b Uniaxial fibre direction λ : 1→ 1.2
Figure 2.16c Uniaxial cross–fibre direction λ : 1→ 1.5
Figure 2.16d Shearing γ : 0→ 0.1
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Figure 2.16: Numerical and analytical comparison of a single element under (a) equibiaxial stretch, (b) uni-
axial fiber direction stretch, (c) uniaxial cross–fibre direction stretch and (d) shearing stretch. In all cases the
fibre direction has been aligned with the x–axis and the cross–fibre is accordingly aligned with the y–axis.
In (a) and (b) the stress are plotted against the fibre direction stretch F11, whereas in (c) and (d) the stresses
are plotted against the cross–fibre stretch F22 and the shearing stretch F12 respectively. Note that the units of
stress are plotted with different values.

Transverse stiffness

As defined previously, the transverse stresses are updated proportionally by the parameter c which is

referred to as the transverse stiffness (Equation 2.15). The value of this parameter has been suggested as

500 kPa by Einstein et al. [78], however no clear justification of this parameter’s effect are detailed. Thus

here the effect of this transverse stiffness term has been assessed by perturbing c by scale factors of 0.01,

0.1, 10 and 100.

In order to avoid the effects of mesh contact, this parameter has been examined in a case of simple

inflation. Here a membrane sized 12 mm × 12 mm × 1 mm has been fixed spatially and a normal

pressure load of 16 kPa has been applied linearly over 1s. Consisting of 144 elements, the orientation of

the elemental fibre angles have been uniformly aligned with the local x–axis. The membrane has been

defined with the same material parameters as in the single element tests (Table 2.8). Comparison of

both the maximum principal stress and the maximum vertical displacement show that aside from 0.01,
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all other scale factors of c show no significant difference (Table 2.10).

Table 2.10: Comparison of the maximum principal stresses and maximum vertical displacement in response
to varying transverse stiffness.

Scale factor Transverse stiffness
[kPa]

Maximum principal
stress [kPa]

Maximum vertical
displacement [mm]

0.01 5 314.9384 4.132396
0.1 50 167.3721 3.306955
1 500 167.3711 3.306951

10 5000 167.3706 3.306949
100 50000 167.3705 3.306949

2.3.2 Chordal material models

In this section the different material models used to represent the chordae tendineae in the isotropic,

orthotropic and hyperelastic models are described in further detail. Defined with linear and non–linear

elastic moduli, standard material models have been implemented in the finite element solver LS–DYNA

(Table 2.11).

Table 2.11: Comparison of the key features of the different material models used to represent the chordae
tendineae.

Model Linear Non–linear
Isotropic 2� �

Orthotropic � 2�
Hyperelastic � 2�

2.3.2.1 Isotropic

In the isotropic model the marginal chordae tendineae have been defined as linearly elastic with a elastic

modulus of 3 MPa. As the focus of this model was to determine the difference between structural–only

and fluid–structure interaction approaches, it was chosen to approximate the material behaviour of the

chordae tendineae with the simplest possible material model. This has been implemented within LS–

DYNA using the standard material model MAT_CABLE_DISCRETE_BEAM in conjunction with the dis-

crete cable element [79, 80]. This particular beam element was selected as it cannot generate stress

under compression, only tension. The area of the beam elements has been defined as 0.6 mm2.

2.3.2.2 Orthotropic and hyperelastic

In the orthotropic and hyperelastic models the material model used to represent the marginal, basal and

strut chordae tendineae has been defined as non–linearly elastic. This has been implemented within

LS–DYNA using the non–linear version of the material model MAT_CABLE_DISCRETE_BEAM and the

discrete cable element [79, 80]. In this material model the non–linear behaviour of both the marginal

and basal chordae have been defined from experimental measurements reported by Kunzelman and

Cochran [67] (Figure 2.17).

The orthotropic and hyperelastic models both contain the marginal and basal chordae, however

the hyperelastic model also contains strut chordae (Table 2.2). As no experimental data on the non–

linear stress–strain behaviour of the strut chordae exist, the strut chordae have been defined with the

same properties as the basal chordae. The cross–sectional areas of the marginal, basal/strut chordae are

defined as 0.45 and 1.15 mm2 respectively.
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Figure 2.17: Non–linear stress–strain behaviour of the marginal and basal chordae tendineae. Data after
Kunzelman and Cochran [67].

2.3.3 Fluid material model

Unlike solids, fluids generate stresses with respect to strain rates rather than strains. The strain rates are

linked to the stresses via the viscosity of the fluid. Although the viscosity of blood exhibit non–linear

behaviour, this typically occurs at low strain rates, thus the blood has been assumed to have constant

viscosity. In LS–DYNA the fluid has been modelled using the material model MAT_NULL, which describes

the stress response to the imposed strain rates [79, 80]. The required parameters for this material model

is the density and dynamic viscoity. This material model is used in conjunction with an equation of state

model which describes the pressure change in response to volumetric changes. Two equation of state

models are available: EOS_LINEAR_POLYNOMIAL and EOS_GRUNEISEN [79, 80].

The change in pressure is defined using the volumetric parameter µ, densityρ and volume v (Equa-

tion 2.16). Here the subscripts 0 indicate the initial values of these variables. The pressure P calculated

using this volumetric parameter µ, density ρ and the speed of sound c . Comparison of these two mod-

els over the pressure range experienced in closure and opening is shown in Figure 2.18. In expansion

the two models behave identically, however differences are observed at larger compressions ratios. The

EOS_GRUNEISEN material model has a numerical advantage as it is faster to compute than the EOS_

LINEAR_POLYNOMIAL.

µ=
v0−v

v
=
ρ

ρ0
−1 (2.16)

P =







(ρ0c 2µ)/(1+µ) if µ> 0

ρ0c 2µ if µ< 0
(2.17)

P =ρ0c 2µ (2.18)
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Figure 2.18: Comparison of the two equation of state models over the physiological range of pressures. Pa-
rameters used for this have been selected to be the same as in the full valve simulations: c = 148.4 m · s−1 and
ρ = 1 g · cm3.

2.4 Numerical implementation

2.4.1 Structural simulations

Here the different numerical aspects of the structural simulations of the valve structure in LS–DYNA

have been are summarised.

2.4.1.1 Mesh validation

The structural equations of motion are solved using the finite element method, the accuracy of the re-

sulting solution is strongly dependent upon the size of the elements used to represent the valve struc-

ture. Here the approach taken to validate the different models are described.

Isotropic and orthotropic models

Both the isotropic and orthotropic models been validated through simulating a structural–only closure

of the full valve geometry. In each model the number of elements have been increased by dividing each

existing element by four, as each parent element is divided into four child elements (Figure 2.19). As all

structural elements are constant stress elements shell elements, the mesh resolution is deemed to be

acceptable when the predicted stress in the child element matches the parent element. Performed in an

iterative fashion, both the isotropic and orthotropic models have been assessed through the maximal

value of the maximum principal stress. In the isotropic and orthotropic models the meshes have been

refined until the difference between successive iterations was reduced to 1% and 3% respectively.

In the case of the orthotropic mesh, the validation has been performed in closure however the ap-

plication of the mesh is in valve opening. As valve opening is a transient dynamic event it is not possible

to compare models with differing mesh densities as the valve is in constant motion, thus it was selected

to validate the mesh density using a quasi–static simulations.
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X2

Figure 2.19: Illustration of increasing mesh density in a structural four–node shell element mesh.

Hyperelastic model

In the hyperelastic model the mesh refining procedure adopted above was found to be unsuitable in the

full valve as mesh instabilities from self–contact and hourglassing (Section 2.4.1.3) were introduced from

changes in the mesh sizing. Thus in order to assess the mesh size it was required to evaluate scenarios

that exclude both contact and hourglass instabilities. Here the mesh sizing has been assessed by (1) in–

plane stretch and (2) out–of–plane inflation of a square membrane sized 12 mm× 12 mm× 1 mm, with

a fibre angle uniformly aligned with the local elemental x–axis. Three different element sizes have been

assessed: 2 mm, 1 mm and 0.5 mm. The material parameters used here are the same as in the single

element tests (Table 2.8).

In the stretch test, the cross–fibre direction has been held constant whilst an in–plane stretch of

1.2 has been applied in the fibre direction as a linear displacement over 1s. In the inflation test, the

boundaries of the membrane are fixed spatially and a pressure load of 16 kPa as been applied normal to

membrane using a linear ramp over 1s. The results of both these tests have shown that the difference

in both the maximum principal stresses and maximal vertical displacements are reduced between the

mesh sizings 1.0 mm and 0.5 mm (Table 2.12).

Table 2.12: Comparison of maximum principal stresses in with different mesh sizing using the user defined
material model described in Section 2.3.1.3.

Maximum
Test Mesh size [mm] Principal stress

[MPa]
Vertical

displacement [mm]
Stretch 2.0 251.2721 –
Stretch 1.0 251.1800 –
Stretch 0.5 251.2721 –

Inflation 2.0 181.4693 3.399927
Inflation 1.0 167.3711 3.306951
Inflation 0.5 164.4045 3.272268

2.4.1.2 Fluid effect

As the heart valves are fully immersed in fluid the dynamic motion of the structure is damped. Therefore

in structural–only heart valve models it is required to approximate this damping effect. Here nodal

velocity damping, mass scaling damping and mass–weighted nodal damping have been assessed and

compared by using a isotropic linearly elastic square membrane of length 10 mm (Table 2.13). Fixed

spatial along its boundaries, inflation of this membrane has been performed by applying a pressure of

20 kPa linearly over 1s. The resulting time dependent vertical deflection of the central node have been

compared in the different simulations.

Nodal velocity dampening has been implemented in LS–DYNA by using the keyword CONTROL_

DYNAMIC_RELAXATION [80]. At each time step, the nodal velocity v n+1/2 is updated using the current

nodal acceleration a n and a scaled value of the previous nodal velocity v n−1/2 (Equation 2.19). Here the

scaling factor η=0.9965, a value determined from experimental measurements performed by Burriesci
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et al. [111] on prosthetic valves in a left heart simulator.

v n+1/2 =ηv n−1/2+a n∆t (2.19)

In order to approximate the fluid damping effect, the mass–scaling approach increases the mass

density of the structure by an appropriate factor. Following the approach adopted by Kunzelman et al.

[85] and Schievano et al. [103], the density has been increased by a factor of 10. However no justification

of this is reported within these studies.

An alternative mass–weighted nodal velocity approach has also been assessed. Implemented in LS–

DYNA using the keyword DAMPING_GLOBAL [80], the acceleration of each node a n is calculated as the

sum of the forces F n which include a damping force FD (Equation 2.20). This damping force is defined

as an appropriate factor Ds of the current nodal momentum m v (Equation 2.21). Here the constant Ds

has been set to 0.01.

a n =M−1
�

F n − F n
D

�

(2.20)

F n
D =Ds m v (2.21)

Comparison of the different damping approaches indicate that the mass scaling approach results in

rapid oscillations when compared to the velocity damping methods (Figure 2.20). The mass–weighted

damping approach initially shows small oscillations but eventually dissipate, however in the nodal ve-

locity scaling approach the number of exportable data points was limited (1 per ∼15 ms on average in

the nodal velocity scaling compared to 1 per 1 ms in the mass–scaled/mass–weighted approaches).

Table 2.13: Nodal/mass damping simulation parameters.

Parameter Value
Shell thickness [mm] 1
Elastic modulus [kPa] 100

Poisson ratio [–] 0.45

2.4.1.3 Hourglass coefficients

The shell elements used in this work all utilise single Gauss point integration, also referred to as reduced

integration, in order to avoid the numerical phenomenon known as “shear locking” in which elements

are locked into non–physical modes [112]. Although reduced integration addresses this issue, it can

result in another numerical instability known as hourglassing in which the displacement of opposing

nodal pairs result in a zero net displacement (Figure 2.21). As a zero–energy mode the element easily

enters this mode, increasing deformations can result in zero area as the element collapses that result

in an infinite velocity. Prevention of these modes are avoided by the application of numerical forces

referred to as hourglass forces which are added at the element level to the stress tensor. There are a

range of hourglass models available in LS–DYNA, with the models divided between viscous and stiffness

models [79, 80]. Here a mixture of the two types have been used.

2.4.2 Fluid simulations

In this section the different numerical aspects of the fluid related simulations in LS–DYNA have been

summarised.
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Figure 2.20: Comparison of the vertical displacement of the centre node of the square membrane against
time in the nodal velocity scaled, mass scaled, and mass–weighted nodal velocity scaled damping ap-
proaches.

Figure 2.21: Illustration of an hourglass instability, here the blue arrows indicate the nodal displacement. As
the net displacement of the nodal pairs are both zero, the increase in energy is zero.

2.4.2.1 Hydrocode

The default fluid solver in LS–DYNA is a compressible flow solver that is referred to as a hydrocode [113].

This particular approach to solving the fluid equations of motion is performed in a two–step manner,

the first step involves a Lagrangian step in which the mesh is deformed subject to the applied forces.

The next step requires the change in velocity and pressure (also referred to as the velocity/pressure flux)

are then advected back to the fixed Eulerian mesh using monotonic advection scheme, for example

the donor cell algorithm or the Van Leer MUSCL algorithm (monotone upwind scheme for conversation

laws) [79]. It is this advection step that imposes the structured volume mesh requirement, as the velocity

and pressure fluxes must be advected along orthogonal directions. The operational flow of this flow

solver is illustrated in Figures 2.22 and 2.23. For further details regarding the operation of hydrocodes

please refer to Benson [113].
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Perform a Lagrangian time step

Perform an advection step

Decide which nodes to move

Move boundary nodes

Move interior nodes

Calculate the transport of the element–centred variables

Calculate the momentum transport and update the velocity

Proceed to next time step

Figure 2.22: Fluid solver operational flow, details after Hallquist [79].
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Figure 2.23: Illustration of flux advection: (1) the fluid is in its fixed Eulerian position with two adjacent
elements 1 and 2. (2) the Lagrangian step results in the element 1 moving to the right, with updated nodal
positions x ′1,x ′2 and x ′3. (3) the flux/transport of the fluid variables from element 1 to 2 is calculated and is
remapped/advected from element 1 to 2.

2.4.2.2 Bulk modulus/Speed of sound

As the flow solver is compressible, the bulk modulus of the fluid must be defined. As blood is essentially

an incompressible fluid, it is required to define the bulk modulus and associated speed of sound c with

an appropriately high value. The speed of sound is related to the bulk modulus K , as shown in Equation

2.22. As described in Section 2.4.2.1, the fluid is solved in a two–step manner. In the Lagrangian step

of the fluid motion the maximum permitted time step is governed by the smallest elemental dimension

and the speed of sound which is related to the bulk modulus by the relationship shown in Equation

2.23. Thus in order to proceed with a workable time step size, the compressibility of the fluid has been

reduced by adjusting the speed of sound. Although reduced, this value is still defined as with a relatively

high value.

This simplification has been determined not to affect the fluid dynamics by consideration of the

time scale required for a pressure wave to instantaneously reflect (from a solid interface) and travel the

annular–apex distance, which has been experimentally reported as approximate 100 mm by Joudinaud

et al. [44]. Using the true speed of sound, here estimated to be 1482 m·s−1, and the annular–apex distance

of 100 mm, the time scale required for a pressure wave to travel this is distance is of the order 1×10−2
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ms. In all numerical simulations the time step is of the order 1×10−4 ms, thus all simulations have

the sufficient temporal resolution to capture fluid wave effects although defined with a reduced bulk

modulus.

c =

r

K

ρ
(2.22)

∆tm a x =
∆l m i n

c
(2.23)

2.4.2.3 Hourglass coefficient

As with the structural simulations, the solid elements are subjected to reduced integration which also

require hourglass stabilisation in order to prevent zero–energy modes and numerical instabilities. For

fluid simulations, it is reported in the LS–DYNA user manuals that lower hourglass coefficients are re-

quired in order to allow the fluid mesh to deform in the correct manner. In this work the recommended

default hourglass model and coefficient value of 1×10−6 has been used.

2.4.2.4 Fluid–structure interaction

Coupling of the structure to the fluid is performed numerically within LS–DYNA using a penalty cou-

pling method [79, 80]. Immersed within the fluid, the contact force between the fluid and structure is

calculated at each time step and applied to both the structure and fluid thus coupling them together. As

detailed in Section 2.4.2.1, the motion of the fluid is solved in a two–step manner in which the first step

the mesh is advanced in a Lagrangian fashion (Figure 2.24). Following this step penetration of the fluid

mesh into the structure is calculated and a force proportional to the distance of penetration is calculated

and applied to both structural and fluid meshes, after which the fluid variables (velocity and pressure)

are advected back to the fixed Eulerian mesh (Figure 2.24). This method of coupling is referred to as

penalty coupling. In LS–DYNA two different contact algorithms are available, nodal and segment based.

However in this work only the segment based option has been used.

This fluid–structure interaction method however has one particular insufficiency in that the struc-

ture is not able to contact itself, as the valve structure does in closure. However close the one portion of

the structure approaches another portion, a gap will always remain between the two structural portions.

In the Lagrangian step the fluid essentially acts as a solid stuck between two surfaces of the structure, es-

sentially incompressible a gap proportional to a single element will always remain in between the valve

in closure (Figure 2.25).

Ωf

Ωs

d F α d

Figure 2.24: The penalty coupling fluid–structure interaction method used in LS–DYNA. The force F applied
to both structural and fluid domains Ωs and Ω f respectively are a function of the overlap distance d .
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element motion

Figure 2.25: As the fluid is modelled as a compressible solid, during closure of the valve structure an artificial
gap persists between the leaflets fluid element is trapped. Although this appears as a open gap, the relative
velocity of the fluid element is zero and therefore fluid motion through this gap is zero.
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Chapter 3

Simulation of Valvular Dynamics

The simulation and modelling of valvular dynamics, in particular that of the mitral valve, requires a

method that is able to handle both the immersed nature of the heart valves within the heart and the large

deformations of a complex three–dimensional structure which also involves self–contact. As detailed

previously in Chapter 1, Section 1.5, published numerical models of the mitral valve can be broadly

divided into structural–only or fluid–structure interaction models. As structural–only models only rep-

resent the structural domain of the valve, the effect of the haemodynamic load is approximated as a uni-

formly distributed pressure load over the entire surface of the valve. Fluid–structure interaction models

however include both the structure of the valve and the fluid of the blood, the haemodynamic load is

approximated from the interaction between the fluid and structure and vice versa resulting in a non–

uniform load over the surface of the valve. Using both approaches, the following three issues related to

the modelling of valvular dynamics have been examined within this chapter:

(1) Method of fluid–structure interaction – Although a commercially available finite element

solver has been used, there remain several aspects of fluid–structure interaction which require

user definition. Examination of the parameters relevant for the modelling of heart valve dynam-

ics, in this and the following chapters, has been performed by comparing the results of numerical

simulations to previously reported experimental results by Hart et al. [114] (Section 3.1).

(2) Effect of fluid volume geometry – Immersed within a fluid volume, existing fluid–structure

interaction models of the mitral valve have simulated valve dynamics in a straight tubular fluid

volume (for example see Einstein et al. [76]). Here the effect of straight and more physiological U–

shaped fluid volumes upon the valvular and fluid dynamics have been assessed, with the results

compared directly against structural–only methods (Section 3.2).

(3) Effect of the full cardiac cycle – Previous mitral valve models have approximated the cardiac

cycle by simulating closure and opening separately using quasi–static approach. Here the valvu-

lar and fluid dynamics throughout a full cardiac cycle (open/closed/open) have been simulated

in both fluid–structure interaction and structural–only models (Section 3.2).

The majority of the results presented here can be found in the paper published by this author titled

“Mitral valve dynamics in structural and fluid-structure interaction models” [115].

3.1 Fluid–structure coupling

In this section the fluid–structure coupling approaches used in this work has been validated by com-

parison to the experimental data reported by Hart et al. [114]. Originally used to validate an alternative

immersed boundary fluid–structure interaction approach, the dynamic motion of a simple valve–like
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structure and the associated fluid field in this experimental set–up have been directly compared to the

numerical results of this alternative model [114]. Here numerical simulations of the same experimen-

tal configuration have been performed, with the corresponding results used to compare qualitatively (as

the quantitative data is unavailable) the different fluid–structure interaction coupling methods available

in LS–DYNA Release 4.2.1 [79, 80].

3.1.1 Experimental configuration

The original experiment describes a three–dimensional channel within which a thin elastic membrane,

initially at rest, is immersed in the fluid and subjected a pulsed velocity profile. Although three dimen-

sional, the channel cross–section is constant and it has been shown that in the centre of the channel the

three dimensionality of the fluid field is reduced to a two–dimensional problem (Figure 3.1). The result-

ing valve and fluid motion in a two–dimensional section in the centre of the channel has been recorded

at different time points during the velocity pulse [114].

Using the parameters reported in this experiment (Table 3.1), a two–dimensional model which cor-

responds to this experiment has been created and implemented in LS–DYNA. Here the thinnest of the

two thicknesses reported has been selected as this represents the membranous behaviour of the valve

most closely. The structure of the valve has been modelled using the standard material model MAT_

ELASTIC [79, 80]. Here the fluid has been modelled using the fluid material model, which is a com-

pressible fluid model EOS_GRUNEISEN [79, 80]. In order to increase the maximum permittable time

step the compressibility of the fluid, with no effect to the fluid behaviour, has been reduced by reducing

the speed of sound to 148.4 m·s−1 (see Chapter 2, Section 2.4.2.2).

b

a

r

l

Figure 3.1: Two dimensional cross section of the channel used to describe the numerical model. Solid lines
indicate the walls of the channel and have been defined with a no–slip condition, the broken lines at the left
and right hand sides of the channel represent the inflow and outflow regions respectively. The dashed line
in the centre of the channel is the leaflet which is initially inclined at 45◦ to the horizontal. The value of the
dimensional parameters marked on this figure are listed in the Table 3.1.

3.1.2 Boundary conditions

The experimentally reported flow rate has been digitised, converted to a velocity and fitted to a 6–th

order Fourier series (Equation 3.1). This velocity u (t ) is then imposed as a boundary condition to the

fluid mesh and a fluid–structure interaction simulation has been performed (Figure 3.3). Using this

model, aspects of the fluid–structure coupling method have been examined such as the shell element

and nodal coupling approach, coupling of single/dual structural sides, the number of coupling points

per shell and the bending stiffness of the structure. Here the bending stiffness has been adjusted by

increasing and decreasing the number of through thickness shell integration points from 3 (bending

stiffness) to 1 (no bending stiffness) [79, 80].

u (t ) = a 0+
6
∑

n=1

a n cos(nw t )+
6
∑

n=1

bn sin(nw t ) (3.1)
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Table 3.1: Dimensional and experimental parameters of the channel geometry, structure and fluid reported
in Hart et al. [114]. †The channel length is not reported but it has been estimated from the original figures.

Channel Value
Length† (a) [mm] 140
Height (b) [mm] 20

Width [mm] 120
Sinus radius (r) [mm] 20

Leaflet Value
Length [mm] 26

Thickness [mm] 0.16
Density [g·cm−3] 890

Elastic modulus [MPa] 1.5
Poisson’s ratio 0.49

Fluid Value
Density [g·cm−3] 1

Dynamic viscosity [kg·m−3] 4.3×10−3

Speed of sound [m·s−1] 148.4
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Figure 3.2: Fourier fit of the experimental inlet velocity profile The coefficients of Equation 3.1 are as follows:
a 0 = 0.05346, a 1 = −0.04652, a 2 = −0.01439, a 3 = 0.006251, a 4 = 0.003468, a 5 = −0.002064, a 6 = 0.0005004,
b1 = 0.05351, b2 = −0.01757, b3 = −0.007301, b4 = 0.003373, b5 = 0.0008904, b6 = −0.0008609 and w =
0.006302.

3.1.3 Structural dynamics

The motion of the membrane during the velocity pulse has been qualitatively compared against the ex-

perimental and numerical results of Hart et al. [114] (Figure 3.4). Here the effect of bending stiffness, the

fluid–structure coupling method and coupling direction have been examined. The number of coupling

points per shell element (Case E, Table 3.2) was found to have no effect on the resulting dynamics and

are have therefore been omitted.

In cases A and B the the effect of modelling the valve with and without bending stiffness has been

examined (membrane assumption). The results show that at the start and towards the end of the veloc-

ity pulse the deformed configurations are similar in both models (see t = 0.35s and t = 0.84s ). However
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Figure 3.3: Fluid mesh with immersed structural mesh of the experimental configuration. Forward flow is
defined from left to right, as indicated by the arrow. Total number of fluid and structural elements are 4816
and 26 respectively.

Table 3.2: Comparison table of the different fluid–structure simulations performed.

Case Membrane Coupling type Coupling points Coupling sides
Shell Nodal 1 4 Double Single

A 2� 2� � 2� � 2� �
B � 2� � 2� � 2� �
C 2� � 2� 2� � 2� �
D 2� 2� � 2� � � 2�
E 2� 2� � � 2� 2� �

following the peak flow rate (t = 0.53s )of velocity that the membrane model (case A) is able to flex more

freely in the central area which corresponds better to the deformed shape. In cases A and C the two

different approaches available in LS–DYNA to perform fluid–structure coupling, shell element coupling

and nodal coupling, have been compared [79, 80]. Here the shell coupling approach results in a de-

formed configuration which is significantly closer to the deformed configuration. In the nodal coupling

(case C) the valve structure does not respond to the deceleration of the fluid, remaining in the open

configuration generated by the peak flow with the structure also featuring folding at the tip of the valve

as the valve fails to align with the flow direction as shown in the experiment results. In cases A and D the

effect of single– and double–sided fluid coupling have been examined. In the single coupled case the

structure is only coupled to fluid motion approaching from the inflow direction. Uncoupled to the fluid

motion in the sinus cavity, single–sided coupling results in the valve folding back upon itself in an unre-

alistic manner (see t=0.35s and t=0.53s in Figure 3.4). As stated previously the number of the coupling

points per shell element were was found to have no effect and thus has not be included for comparison

(case E).

3.1.4 Fluid dynamics

The magnitude of fluid velocity in the different simulated cases A–D are listed in Table 3.3. It can be

seen that both the magnitude of the maximum velocity and the time of occurrence are similar in all

cases with the exception of the nodal coupled case. Comparison of the directionality of the fluid field

in the experimental and numerical results show similarities, in particular the direction of rotation in the

radial cavity (Figure 3.5).

Table 3.3: Maximum velocity and time of occurrence in the different simulated cases.

Case Vm a x [m·s−1] Time [ms]
A 0.215 282
B 0.215 283
C 0.203 466
D 0.214 293
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Figure 3.4: Numerical and experimental valve deformations in response to the velocity pulse. The experimental and numerical results of Hart et al. [114] are boxed in black and shown on the
left. The numerical results from LS–DYNA for cases A–D are shown to the right of this.
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Figure 3.5: Velocity vectors in the no–bending and bending stiffness simulations, cases A and B respectively.

3.1.5 Comparison

The results of these numerical simulations have shown that the fluid–structure methods available in LS–

DYNA are able to simulate the dynamic motion of a membranous structure and the associated fluid field.

However some differences exist between the simulated and the original experimental results which re-

sult in the motion of the valve appearing slightly damped in comparison to the experimental results.

These invariably stem from the inexact nature of comparison and the definition of the inlet velocity

profile. Other causes of discrepancy are likely due to the the smaller number of elements used in the

original structural model (8 beam elements against 26 shell elements), the implicit solution method and

the buoyancy effect of the less dense valve material, which was originally acknowledged by Hart et al.

[114].

3.1.6 Summary

By comparison with previous published experimental results by Hart et al. [114], the different fluid–

structure coupling methods available in LS–DYNA have been assessed for the use of simulated valvular

dynamics. The comparison of the different coupling techniques have shown that the most suitable cases

for simulating valve dynamics are A (no bending stiffness) and B (bending stiffness). In this work, the

simulations presented in Chapter 3 have been performed with bending stiffness (B) however the follow-

ing simulations in Chapters 4 and 5 have been performed without bending stiffness (A). The decision

to remove the bending stiffness was based upon two factors: the first was that no significant difference

was noted between the cases A and B and the second was that by removing the in–plane/out–of–plane

coupling, the complexity of the simulations were signficantly reduced (3+ integration points reduced to

1) at the cost of no signficant difference.
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3.2 Full valve dynamics

As detailed in Chapter 1, Section 1.5, there are a number of different numerical studies of the mitral

valve, with each examining a specific functional role in the function of the valve. The majority of these

models have been described using a structural–only approach, currently the only fluid–structure inter-

action model of a native mitral valve currently reported is that of Einstein et al. [76] (and the subsequent

iterations) in which the valve was positioned in a tubular fluid volume and the valve closure was sim-

ulated. All current comparisons between fluid–structure interaction and structural–only valve models

refer to this model and are limited to comparison of the stress state, as no details of the dynamics of

closure are reported.

In this section the differences between structural–only and fluid–structure interaction techniques

have been quantified. Using a model of the mitral valve, comparison of the valvular dynamics in sim-

ulations of valve closure and a full cardiac cycle have been performed using structural only and fluid-

structure interaction approaches in the finite element solver LS–DYNA. As previous fluid–structure in-

teraction studies of the mitral valve have been performed solely in tubular geometries [76], the effect

of the fluid volume on valve dynamics and vice versa have also been quantified by using both tubular

and ventricular shaped fluid volumes. The role of the fluid volume has particular implications for the

hydrodynamic testing of artificial valves as all current tests are performed in straight fluid chambers as

required by current ISO regulations [116] and FDA Replacement Heart Valve Guidance [117].

3.2.1 Valve model

The model presented here is referred to as the isotropic model previously in Chapter 2 and is based upon

anatomical measurements and descriptions previously reported by Sakai et al. [19] and Ho [9]. Here the

annulus of the model has been defined as a static planar D–shaped orifice, the annular proportions

and lengths of the different leaflet cusps have been defined from anatomical measurements of excised

human valves [19]. Studies on porcine mitral valves have shown that the annular length of an intact

valve is shorter than that of an excised valve [11], for this reason the annular length of each cusp segment

has been adjusted from the reported excised value and scaled to the corresponding annular segment of

the model. The total annular length of the model is 85.7 mm and the annular lengths of the different

leaflet sections are listed in Table 3.4. The leaflets of the valve model extend outwards from the annulus

towards the free margin of the leaflets, which has been defined using splines connecting the midpoint

of each cusps (defined as the leaflet height) to an interface point, defined as 7.5 mm above the annular

plane, between each cusp. In this model only the primary chordae tendineae, which are attached to

the free margin of the leaflet, have been modelled. The number and location of these chordae have

been based on anatomical descriptions [16, 19]. These chordae have been modelled as attached to a

static node which represents the papillary muscle tip, positioned in a plane 20.0 to 22.0 mm above the

annular plane (Figure 3.6). The location of papillary tip was adjusted to ensure coaptation of the leaflet

occurs with the application of physiological pressure.

The initial geometry of the valve model was defined with the leaflets in an open configuration and

in order to reduce the computational time required, only half the model was simulated. Here the plane

of symmetry was defined as the anteroposterior axis of the valve, as shown in Figure 3.6.

Table 3.4: Dimensional parameters of the mitral valve model.

Leaflet Annular length
[mm]

Leaflet height
[mm]

Leaflet area [mm2]

Anterior 28.9 23.4 444.3
Commissural 7.0 8.7 46.1
Posterior (P2) 17.4 13.8 177.7

Posterior (P1/P3) 12.7 11.2 111.4
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Figure 3.6: (a) Profile of the mitral valve model, with and without the finite element shell mesh; leaflet labels:
A – anterior leaflet, C – commissural leaflet, P1/P3 and P2 – side and central cusps of the posterior leaflet. (b)
Model profile as viewed from the left atrium with the anteroposterior (22.5 mm) and commissural (30 mm)
diameters labelled; the reflected component of the geometry is represented in grey.

3.2.2 Material model

As the main aim of this work was to characterise the differences in structural and fluid–structure interac-

tion techniques the problem has been simplified. Here the material properties of the valve leaflets and

chordae tendineae have been simplified and modelled as isotropic linearly elastic materials, neglecting

their non–linear elastic behaviour and anisotropy.

Implemented with the standard material model MAT_ELASTIC, both anterior and posterior leaflets

have been defined with the same material properties. Here the chordae have been modelled as only

generating force solely under tension and have defined using the standard material model MAT_CABLE

_DISCRETE_BEAM [79, 80] (Table 3.5).

Table 3.5: Leaflet and chordae tendineae material properties.

Variable Shell Beam
Elastic modulus [MPa] 3 40

Poisson’s ratio [–] 0.45 –

3.2.3 Valve model – finite element mesh

The geometry of the valve model was discretised into a finite element mesh of shell elements for the

leaflets and beam elements for chordae tendineae. Here the leaflets have been defined using Belytschko–

Lin–Tsay shell elements with a constant thickness of 0.75 mm. The chordae have been defined using

discrete beam/cable elements, which collapse under compression, with a uniform cross–sectional area

of 0.6 mm2 [79, 80]. The density ρ of all structural components has been defined as ρ = 1000 kg·m−3.

The independence of the finite element solution to the size of the elements in the valvular model

was determined independently of the fluid model. Using the closure conditions in a structural–only

analysis, the mesh sizing was determined to be sufficient by performing a mesh independence analysis

(see Chapter 2, Section 2.4.1.1). The final model consisted of 2688 shell elements and 333 beam elements

(Figure 3.6).

3.2.4 Fluid volumes

Fluid–structure interaction has been performed by immersing the valve model into separate overlap-

ping tubular and ventricular shaped fluid volume. Static and rigid with a fixed volume, the geometry of

these fluid volumes represent the left ventricle of the heart only and have been sized on the volumetric
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measurements of the left ventricle. As the fluid–structure interaction simulations include aspects of sys-

tole and diastole, an intermediate volume of 35 cm3 for the atrial section and 85 cm3 for the ventricular

section has been chosen. The fluid volume geometries and the surfaces used to apply the transvalvular

pressures are shown in Figure 3.7.

Figure 3.7: (a) tubular fluid volume and mesh and (b) ventricular fluid volume and mesh; Figure labels AP and
VP denote the atrial and ventricular pressure surfaces respectively. (c) schematic outline of the ventricular
fluid volume with the solid boundaries (solid lines) and annular orifice (dotted line) labelled.

3.2.5 Fluid parameters

Parameters have been chosen to reflect the higher density and dynamic viscosity of blood, which has

been modelled as a Newtonian fluid (Table 3.6) Here the fluid material model EOS_GRUNEISEN has

been used, in order to increase the maximum permittable time step the compressibility of the fluid has

been reduced (see Chapter 2, Section 2.4.2.2).

Table 3.6: Newtonian fluid properties used to represent blood. Note that the bulk modulus has been reduced
in order to increase the maximum permittable time step (see Chapter 2, Section 2.4.2.2).

Parameter Value
Density [g·cm−3] 1.00

Dynamic viscosity [Pa·s] 0.004
Fluid speed of sound [m·s] 148.4

3.2.6 Fluid volumes – finite element meshes

The geometry of the two fluid volumes was discretised into solid LS–DYNA ALE fluid elements, with a

mesh designed such that the valvular orifice matched the shape of the valve annulus (Figure 3.7). As

with the structural mesh, the element size of the fluid mesh was selected such that the independence of
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the solution to the mesh was obtained. This was performed by applying a velocity boundary condition

to the inlet of each model equal to 1m·s−1. The solution was considered converged when the absolute

difference in the velocity between subsequent timesteps was of the order of 10−6. Once stabilised, the

velocity across the valve plane was compared until the difference between subsequent models was re-

duced to less than 5% in the region of interest. The final models of the tubular and ventricular volumes

consisted of 81,920 and 43,008 solid brick elements respectively, as shown in Figure 3.7. The ventricu-

lar pressure plane (VP in Figure 3.7) was defined at the plane of the outlet of the fluid volume in both

fluid–structure interaction models.

3.2.7 Transvalvular pressure difference

The pressure applied to both structural and fluid–structure interaction models has been taken from Lev-

ick [1], the reported curves have been digitised and then formatted into an appropriate format suitable

for LS–DYNA (Figure 3.8). Using the structural and fluid–structure interaction models, the structural and

fluid dynamics have been simulated using two different pressure loads: (1) early systolic pressure ramp

simulating valve closing (ESPR in Figure 3.8) and (2) a full cardiac cycle simulating both valve opening

and closing.

For the full cardiac cycle the pressure difference illustrated in Figure 3.8 is input directly as a pres-

sure load onto the fluid volume/structural model. For the early systolic pressure ramp, the transvalvular

pressure applied to the model was measured as the difference from the point of the left atrial/left ventri-

cle pressure cross-over until the maximum of ventricular pressure. The maximum ventricular pressure

was sustained for a further 22 ms, in order to ensure the valve was in a static configuration, taking the

total simulation time to 200 ms.
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Figure 3.8: Transvalvular pressure load, values after Levick [1]. Label definitions – D1, 1st diastolic phase,
valve open; ESPR, early systolic pressure ramp, valve closing; S, systolic phase, valve closed; D2, 2nd diastolic
phase, valve open; A, atrial systole (A wave); X, atrial relaxation (X wave); V, atrial filling (V wave); Y, atrial
emptying (Y descent).
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3.2.7.1 Structural–only simulations

The transvalvular pressures described in Figure 3.8 were applied directly to the structural model as a uni-

form pressure load distributed over the corresponding atrial and ventricular sides of the leaflet structure.

As before, the nodal velocity of the valve structure was scaled using a global damping factor of 0.9965,

a value which was based on previous experience [111]. In order to model the valve as a single surface

structure, a contact penalty condition was applied to all the shell elements of the model.

3.2.7.2 Fluid–structure interaction simulations

In the fluid–structure interaction simulations, the transvalvular pressure was applied to the boundaries

of the fluid models (see Figure 3.7) and the resulting fluid flow has been coupled to the structure of the

valve by a penalty coupling method: if the fluid contacts and penetrates the structure of the valve, a resis-

tive force linearly proportional to the distance penetrated is applied to both the fluid and the structure,

thus coupling them together [79, 80]. Under the application of the ventricular pressure ramp (ESPR)

the fluid–structure coupling has only been applied to the ventricular side of the valve, as fluid only ap-

proaches from this side. In the full cardiac cycle simulation this coupling was applied to both atrial and

ventricular sides of the valve, as fluid flow approaches the valve from both atrial and ventricular sides.

Fluid flow was restricted to flow through the valve by applying a no-slip condition to the nodes in the

plane of the valve. The boundaries of the volume, with the exception of the inflow and outflow sections

(AP and VP in Figure 3.7), were also defined as no-slip.

3.2.8 Simulation details

Here a combination of different software has been used. The geometry and finite element mesh of all the

models described in this work were generated using ANSYS (Release 11.0) and subsequently converted

to a LS–DYNA compatible format using a custom written script. All the numerical simulations were

performed on a Intel Xeon 2.66 GHz workstation operating with LS–DYNA 971 Release 3.2.1 and post–

processing of the data was performed using a combination of Ensight 9.1, LS–PREPOST 2.1 and MATLAB

7.6.0.

3.2.9 Valve closure simulations

In this section the dynamic behaviour of the valve in valve closure only is presented. Under the applica-

tion of the early systolic pressure ramp (ESPR) the valve leaflets coapt together and remain closed until

the end of the simulation. Here the structural and fluid–structure interaction models have been anal-

ysed and compared at closure, when the structure is in a static, closed configuration. The maximum

values of the principal stresses at t = 200ms and their locations in the three different models are listed

in Table 3.7. The corresponding stress distribution in the valve, as viewed from the ventricular side, is

presented in Figure 3.9. The configuration of the valve, represented by the nodes in the anteroposterior

section, at t = 200ms is displayed in Figure 3.10.

Table 3.7: Comparision of maximum value of principal stress and valvular location at valve closure.

Model Principal stress (kPa) Location
Structural 566.4 P2/P3 fold

Tubular 626.3 P2/P3 fold
Ventricular 635.3 P2/P3 fold

The configuration of the valve at closure in the different models is compared in Figure 3.10. In all

of the models, the leaflets have coapted and the valve has closed. The gap in the fluid–structure inter-

action models is a numerical artifact, which has also been noted previously by Kunzelman and et al.
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(a) Structural model

(b) Tubular model

(c) Ventricular model

Figure 3.9: Maximum principal stresses in the valve at t= 200ms in units of MPa in: (a) the structural model,
(b) the tubular model and (c) the ventricular model. Stress range from 0 MPa to 0.5 MPa.

Table 3.8: Structural and FSI model simulation time for the different pressure loads.

Model Pressure load Approx. simulation time
Structural Closure 6 minutes

Tubular Closure 18 hours
Ventricular Closure 13 hours
Structural Cardiac cycle 50 minutes

Tubular Cardiac cycle 90 hours
Ventricular Cardiac cycle 65 hours

[98]. The nodal positions at the base of the valve compare well in all the models, but significant dif-

ferences arise towards the leaflet tips between the structural and fluid–structure interaction models; in

94



3.2. Full valve dynamics Chapter 3. Simulation of Valvular Dynamics

y-coordinate [mm]

z-
co

or
di

na
te

 [m
m

]

-15 -10 -5 0 5

-14

-12

-10

-8

-6

-4

-2

0

2

Structural
Tubular
Ventricular

Figure 3.10: Configuration of the valve in the anteroposterior section at t = 200ms closure in the structural,
tubular and ventricular models.

both these models the tips of the posterior leaflets are positioned further towards the anterior side than

the structural model. This difference arises from the simplification of uniform pressure applied to the

surface of the valve in the structural simulation. At the base of the valve, this assumption holds well as

the pressures on each side of the valve corresponds to the pressure in the atrial and ventricular cham-

bers. Towards the tips of the leaflets, close to the coapting surfaces, the transvalvular pressure is no

longer the same as the pressure over the rest of the body and the assumption of uniform pressure no

longer holds. The resulting non-uniform pressure distribution over the valve results in the difference in

closure exhibited in Figure 3.10.

The corresponding distribution of local (elemental) maximum of the principal stresses are compared

in Figure 3.9 and their global maxima at closure are listed in Table 3.7. Both fluid–structure interac-

tion models presented higher maximum values of stress than the structural model, with the ventricular

model with the largest value. In all models the peak stress were located at the fold of the posterior leaflet

(P2/P3). From Figure 3.9 it can be seen that the distribution of stress is similar, with stress concentrations

located at the base of the cusps and at the folds of the leaflet. For closure events only, structural mod-

els simulate a similar stress distribution to fluid–structure interaction models, although with a lower

magnitude of stress. However structural–only models do have a clear advantage over fluid–structure

interaction models in terms of the required simulation time, as shown in Table 3.8.

3.2.10 Cardiac cycle simulation

In this section the dynamic behaviour of the valve and the fluid in the full cardiac cycle is presented. In

the previous section only valve closure has been simulated, here the transvalvular pressure load applied

results in the simulation of opening, closing and reopening phases of the valve. This allow the exami-

nation of the opening phase following closure, a factor which has a key role in cardiac function during

diastole (see Chapter 1, Section 1.3.1).

3.2.10.1 Valve dynamics

The dynamics of the valve in the two fluid–structure interaction simulations have been compared against

each other and also with the structural simulation subject to the same pressure load in terms of the

maximum resultant nodal velocity in the anteroposterior section of the valve during opening and clos-
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ing (Table 3.9), valve configuration and nodal velocity during closure (Figure 3.11) and the change in

geometric orifice area throughout the simulated cardiac cycle (Figure 3.12).

Table 3.9: Maximum anteroposterior nodal velocity during closing (C) and opening (O) phases in the struc-
tural, tubular and ventricular models, listed with the time of occurance.

Model C/O Time [ms] Max. resultant
velocity [ms−1]

Structural C 246 0.922
Tubular C 254 1.202

Ventricular C 252 1.058
Structural O 664 0.351

Tubular O 684 0.748
Ventricular O 684 0.657
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(b) Tubular and ventricular models

Figure 3.11: Valve configuration, through the anteroposterior section, at the time of maximum nodal veloc-
ity (see Table 3.9) in: (a) the structural model and (b) the tubular and ventricular models. Here the nodal
positions have be drawn with the corresponding velocity vectors.
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The difference in the nodal velocity of the valve structure, in the anteroposterior section, during

opening and closing has been compared in Table 3.9. During closure of the valve in the S phase, the max-

imum nodal velocity in the structural model is comparable to the nodal velocities in the fluid–structure

interaction simulations. As the valve reopens in the D2 phase, the maximum nodal velocity in the struc-

tural model is significantly lower than the fluid–structure interaction model. The nodal coordinates and

corresponding velocities of the nodes in the anteroposterior section of the valve during valve opening (S

phase) of the different models are presented in Figure 3.11. In the structural simulation the maximum

nodal velocity occurs at the tip of the anterior leaflet when the anterior leaflet is close to impacting

the posterior leaflet; whereas in the fluid–structure interaction simulations the maximum nodal veloc-

ities occur close to the centre of the anterior leaflet whilst the leaflets are still separated by a distance

of approximately 5mm. From comparing the coaptation of the leaflets, subtle differences were found

in the two fluid–structure interaction simulations. In the tubular model both leaflets were displaced

to the centre of the orifice during closure, which resulted in the posterior leaflet making contact with

the centre of the anterior leaflet. With the further application of pressure the point of coaptation then

moved towards the anterior leaflet tip. In the ventricular model, the posterior leaflet sustains a smaller

displacement and the anterior leaflet contacts the posterior leaflet close to the tip of the anterior leaflet

and with the application of further pressure no further displacement occurs.
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Figure 3.12: Variation in the geometric orifice area during the cardiac cycle for the structural and FSI models.
This area is determined by measuring the area enclosed by the valve leaflets, relative to a plane parallel to
the annulus at the height of the commissural/anterior leaflet cleft, at 100ms intervals during the cycle. The
resulting area ratio is calculated relative to the initial orifice area at t = 0ms.

Variation in the geometric orifice area in both fluid–structure interaction models during the D1 and

D2 phases were found to be marginally smaller than the structural model, with the ventricular model

larger than the tubular model (see Figure 3.12). During the S phase the structural model presented a

smaller geometric orifice area than both fluid–structure interaction models, with all models following

the same trend. However the complete closure of the valve in the fluid–structure interaction models is

hampered by the fluid element gap, as previously highlighted in Figure 3.10.
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3.2.10.2 Fluid volume effect

The dynamics of the fluid in the two fluid–structure interaction simulations have been compared against

each other in terms of the maximum fluid velocity and vorticity (Tables 3.10 and 3.11), flow field in the

first open phase (Figure 3.13), particle traces during closure (Figure 3.14) and the particle traces in the

second open phase (Figure 3.15).

Table 3.10: Time and maximum magnitude of the nodal z–velocity in valvular plane of the tubular and ven-
tricular models.

Model Time (ms) Max. z–velocity (ms−1)
Tubular 255 2.738

Ventricular 254 1.857

Table 3.11: Maximum magnitude of the vorticity during closing (C) and opening (O) phases in the tubular
and ventricular models in the anteroposterior plane, listed with the time of occurrence.

Model C/O Time (ms) Max. of vorticity (s−1)
Tubular C 257 1.21×103

Ventricular C 257 0.79×103

Tubular O 685 0.31×103

Ventricular O 685 0.35×103

Figure 3.13: Fluid velocity during diastolic filling phase (D1) at t= 200 ms visualised in the centre of the valve
model in: (a) the tubular model and (b) the ventricular model. Velocity range from 0 to 1.3 ms−1.

In the D1 phase, the valve begins in an open position and flow passes through the valvular orifice

into the ventricular chamber (Figure 3.13). In the tubular model the flow is directed to the posterior side

by the anterior leaflet, but in the ventricular model the flow bends round the bottom of the ventricular

volume towards the left ventricular outtract. Although the maximum velocity of the core of the fluid is

similar between the fluid–structure interaction models, the extent of the jet is significantly smaller in

ventricular model as the fluid more restricted than in the tubular model.

In the fluid domain, the change of sign in the transvalvular pressure gradient causes the flow to

change direction between the D1, S and D2 phases of the pressure curve (see Figure 3.8). In the D1

phase of the cardiac cycle, the valve is open and flow passes from the atrial chamber to the ventricular

chamber; the flow field during this phase (t = 200 ms) in the tubular and ventricular models, as viewed

through the symmetry plane of the fluid volume, is shown in Figure 3.13.
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Figure 3.14: Fluid particle trace during valve closure at t= 257 ms in: (a) the tubular model and (b) the ven-
tricular model. Velocity range from 0 to 3.0 ms−1.

Figure 3.15: Fluid particle trace during valve opening at t= 685 ms in: (a) the tubular model and (b) the
ventricular model. Velocity range from 0 to 0.8 ms−1.

Following the D1 phase is the S phase, during which the flow direction reverses causing the valve to

close. The closure of the valve generates a fluid jet, or dynamic regurgitation, forcing fluid back into the

atrial section. The timing and maximum magnitude of the nodal z-velocity in the valvular plane in the

tubular and ventricular models is listed in Table 3.10. A particle trace following the velocity field of the

fluid in the tubular and ventricular models at t= 257ms is presented in Figure 3.14.

After closure of the valve in the S phase, the valve re-opens during the D2 phase. As flow enters the

ventricular chamber of the fluid volume, fluid mixing generates vorticity in the flow. A particle trace

following the velocity field of the fluid in the tubular and ventricular models at t = 685ms is presented

in Fig. 3.15. The time points of both Figures 3.14 and 3.15 were selected to coincide with the maximum

of transvalvular velocity and when the behaviour of the fluid was most evident. The corresponding

maximum vorticity at both these timepoints (t= 257 ms and t= 685 ms) in both tubular and ventricular

fluid geometries is listed in Table 3.11.

Following this first filling phase is the S phase during which the direction of fluid flow reverses and

closes the valve. The motion of the valve during closure generates a dynamic regurgitant fluid jet in both

fluid–structure interaction models. From measuring the velocity of the fluid nodes lying in the valvular
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plane of the fluid volume, the maximum velocity was found to occur at approximately the same time but

the magnitude in the tubular model was found to be approximately 50% greater than that of the ven-

tricular model (Table 3.10), which correlates with the higher transvalvular flow velocities as shown in

Figure 3.13. Comparison of the filling velocity compares well to values described in the literature of ap-

proximately 80cms−1 [118]. After the S phase comes the D2 phase, during which the valve reopens and

flow passes from the atrium to the ventricle. As the valve opens a fluid jet forms, generating vorticity in

the ventricular chamber of the fluid volume. Due to the faster transvalvular flow, the maximum value of

the vorticity was found to be greater in the tubular model than the ventricular model (see Table 3.11).

However the vorticity of the flow was found to have a larger extent in the ventricular fluid volume than

the tubular volume, as highlighted in the particle traces of during reopening of the valve in Figure 3.15.

Analysis of the two fluid volumes used in the fluid–structure interaction simulations has shown that the

valvular dynamics, in terms of the nodal configuration at closure and the nodal velocities during open-

ing and closing, are comparable between the fluid–structure interaction models although differences

were noted in the coaptation dynamics. The effect on the coupled fluid dynamics in the fluid volumes

were found to generate higher velocity flow in the tubular volume during opening and closing, along

with differences in the fluid vorticity during reopening.

3.2.11 Limitations

The valvular model used in this work has been useful in analysing the differences between the struc-

tural and fluid–structure interaction modelling techniques, but it has limitations such as the uniform

thickness and the linear elastic behaviour of the valve model. Although the anterior cusp and the cen-

tral posterior cusp coapt successfully, the valve does not fully close in the commissural areas. Due to

the expensive computational time required, the fluid–structure interaction simulations presented here

have only been performed for a single cycle. The fluid volume used to represent the left atrium and

ventricle have been sized using realistic volumetric measurements, but are non-physiological in that

the boundaries are modelled as rigid and static; the contractility of the left ventricular chamber and the

papillary muscles have been neglected. However the models incorporate aspects which have not been

previously examined in heart valve modelling and offer a qualitative description of the valve behaviour

under different operative conditions. The same modelling techniques can also be applied to tissue [119]

and polymeric [120] valves which also undergo large deformation in response to fluid loads.

3.2.12 Summary

Here the difference between structural–only models and fluid–structure interaction models has been

presented in two separate simulations, one simulating closure only and the other simulating the full

cardiac cycle. From the closure simulation it has been shown that the structural model is similar to the

fluid–structure interaction models in terms of the predicted stresses but not the stress magnitude or the

valvular configuration. Although there are differences between the models, the numerical complexity of

a fluid–structure interaction simulations highlights the suitability of structural–only simulations for the

modelling of static configurations such as closed valves.

In the cardiac cycle simulation the coupled dynamics of the structure and the fluid has been ex-

amined. It was found that the behaviour of the valve varied significantly between the structural and

fluid–structure interaction models due to the uniform pressure distribution in the structural model; the

dynamics of the valve in the two fluid volumes were found to be similar, with subtle difference in the

coaptation of the valve. Significant differences in the fluid domains of the fluid–structure interaction

models were noted, with the tubular model exhibiting faster fluid velocity during both opening and

closing of the valve and a reduced fluid vorticity when compared to the ventricular model.

In conclusion, structural–only models have been shown to produce similar results when consider
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static/quasi–static events, but in order to accurately simulate full dynamic behaviour fluid–structure

interaction models are required.

3.3 Context

Although several different numerical studies have been performed on mitral valve models, this work has

characterised one of the key assumptions in these studies. Using a fluid–structure interaction method

which has been evaluated against previously reported experimental results, the effect of the structural–

only approximation of the haemodynamic load has been examined. Here a quasi–static simulations of

closure and full cycle simulations of valve closure/reopening have been performed, previous analysis

of valve dynamics have solely been quasi–static closure only or simplified full cycle simulations (for

example the sinusoidal pressure load used in Kunzelman et al. [85]). Here this study has shown that

the uniform pressure assumptions made in structural only models results in differences in the dynamic

motion of the valve, final deformed configuration and stress distributions.

This dynamic motion has particular impact in scenarios such as the edge–to–edge repair whereby

the shape of the valvular orifice is changed (see Chapter 4). During diastole the fluid loading of the

valve has significantly altered from its normal uncorrected state and methods such as fluid–structure

interaction are required to determine the structural load and associated stresses in the valve from the

dynamic interaction of the structure and the fluid. Also, as the mitral valve regulates the flow in the

heart, fluid–structure interaction models simulating normal and pathological states (such as valvular

stenosis where valvular motion is restricted) are important.
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Chapter 4

Valvular Repair Techniques

Complementing in vivo and in vitro experimental techniques, numerical simulation of surgical repair

techniques offer additional insight into valvular function. Variables which are unmeasurable exper-

imentally, such as the internal stresses of the valve, can be approximated in physiological scenarios

through numiercal modelling methods. Here a fluid–structure interaction modelling technique has

been used to address the simulation of a valvular repair technique known as the edge–to–edge surgical

repair technique. Described in further detail in Section 4.1, the following two issues related to modelling

the edge–to–edge repair have been examined within this chapter:

(1) Fluid–loading approximation – Previous structural–only models of this repair technique have

approximated the haemodynamic loading using an approach based upon the geometric orifice

area of the valve. Here this approximation has been characterised using both structural–only and

fluid–structure interaction models of an edge–to–edge repaired valve (Section 4.2).

(2) Valvular repair with or without annuloplasty – There are two main approaches through which

the edge–to–edge repair can be applied, through open heart surgery or percutaneously, with the

key difference between the two being the option of applying annular support through annu-

loplasty. Using a fluid–structure interaction method, the differences between the edge–to–edge

repair with and without annuloplasty have been examined in a dysfunctional model of the mitral

valve (Section 4.3).

The majority of the results presented within this chapter have contributed to the paper published by

this author titled: “Fluid–structure interaction study of the edge-to-edge repair technique on the mitral

valve” [121].

4.1 Clinical background

As highlighted previously, the most common dysfunction of the mitral valve is mitral valve regurgitation

which accounts for ∼70% of native mitral valve dysfunctions [3]. In mitral valve regurgitation abnor-

mal amounts of retrograde flow enters the atrial chamber increasing the haemodynamic load in the

left heart, a factor which can lead to cardiac related pathologies such as ventricular and atrial dilation,

hypertrophy and atrial fibrillation [5]. The etiologies this dysfunction can be divided between struc-

tural (primary) and functional (secondary) dysfunctions. Structural dysfunctions are caused by factors

which affect the tissue of the valve, resulting in a loss of biomechanical strength (i.e. myxomatous mi-

tral tissue degeneration). Functional dysfunctions result from indirect factors which do not affect the

tissue, but impact the function of the valvular subcomponents (i.e. annular dilation or papillary muscle

displacement) [122]. Correction of regurgitation is performed by repairing existing valve anatomy or re-
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placement by prosthetic substitute. Repair is preferred if possible, as mortality rates are reduced (2.0%

against 6.1% for replacement) and other related complications such as thromboses are minimised [6].

Using the existing anatomy, repair attempts to improve compromised valvular function. The most

common approach is annuloplasty, in which a prosthetic ring is implanted to reshape the annulus ge-

ometry to a functional state. A range of different options exist which include rigid/semi-rigid or flexible

devices, with closed or partial ring designs. Another repair method is the edge–to–edge repair technique

designed by Alfieri [122]. This technique rectifies prolapse through restoring coaptation by joining the

prolapsing segment(s) to the opposing leaflets. By repairing the existing valve structure the edge–to–

edge repair reduces the severity of the regurgitation during systole, improving factors such as the ejec-

tion fraction [123]. However technique reduces both the geometric and effective orifice areas of the

valve during diastole, altering the normal stress state of the valve and fluid dynamics during diastolic

filling.

Traditionally the edge–to–edge repair is performed via a midline sternotomy and in conjunction

with annuloplasty, a factor which has had positive clinical results in particular when annular function

is compromised [122, 124]. Recently less invasive approaches have been pioneered whereby this repair

is performed using a clip, rather than sutures. Delivered via percutaneous access through the femoral

venous transseptal path, this clip consists of two metallic arms which grip and hold the prolapsing seg-

ments of the leaflets together as the heart beats [125]. Less invasive as open access to the heart is no

longer required, these methods do not allow additional supplement of an annuloplasty ring.

4.2 Edge–to–edge modelling methods

Although experimental [126] and clinical studies [127] of the edge–to–edge repair provide functional

understanding of the haemodynamic properties and the clinical success rate of the procedure respec-

tively, these studies do not provide insight into how the valve itself is affected. In order to assess the

biomechanical function of the valve in such states it is required to utilise numerical modelling tech-

niques. Due to the immersed nature of the heart valves and the resulting non–uniform haemodynamics

loads throughout the cardiac cycle, numerical modelling heart valves is a complex issue. As detailed in

Chapter 3, this requires an approach that is able to address the large deformation of a non–linear elastic

structure and the coupling of the fluid and structural domains (fluid–structure interaction).

Although fluid–structure interaction models of the native mitral valve exist, no such models of the

edge–to–edge repair have previously been reported. Prior to the work reported here, all previous mod-

els of the edge–to–edge repair have been performed using structural–only modelling [105, 104, 95] or

valveless fluid–only modelling approaches [106], both of which have limitations. As detailed in Chapter

3, structural–only models simplify the haemodynamic loading upon the valve as uniform. This assump-

tion of uniform pressure has been previously shown to affect valve dynamics in terms of its deformation

and stress state, particular in dynamic event such as valve opening. Although fluid–only models yield

the non–uniform pressure field across the valve, these models do not account for the deformation of the

valve which in turn regulates the flow through the orifice.

Here the methodology used to simulate the haemodynamic loading during diastole in structural–

only models of the edge–to–edge repair have been characterised against comparative fluid–structure

interaction simulations. In previously reported structural–only models (see Dal Pan et al. [104] for exam-

ple) the transvalvular pressure difference used to simulate diastole has been defined using a numerically

derived relationship based upon the flow rate. Using the same flow rate in a fluid–structure simulation,

the effect of this uniform pressure load on the resulting stress state and deformed configuration of the

valve have been compared.
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4.2.1 Mitral valve model

The geometry of the mitral valve used here is a modified version of the model described in Chapter 2 as

the orthotropic model. In order to model the effect of the edge–to-edge correction, the central region of

the anterior and posterior leaflet have been connected together using rigid beams by initially defining

the valve in a semi–closed position (Figure 4.2). In this model the annulus has been defined with an

anteropostero diameter of 24 mm and a commissural diameter of 32 mm, consistent with the 4:3 ratio

described previously in Chapter 2, Section 2.1.1. The leaflets have been sized using the anatomical data

reported by Sakai et al. [19], with the corresponding lengths and areas are listed in Table 4.1. Here the

papillary muscle has been positioned 22 mm above the annular plane, the lateral positioning of the

papillary muscle has been defined as the same as in the model described in Chapter 3, Section 3.2.1.

In order to reduce the numerical complexity the valve has been modelled as symmetrical about the

anteropostero axis. The leaflets and chordae have been modelled using 952 Hughes–Liu shell elements

and 658 discrete cable/beam elements respectively [79, 80]. In this model the semi–closed configuration

of the valve leaflets are defined as the initial stress–free configuration.

Table 4.1: Leaflet lengths and areas of the linear orthotropic edge–to–edge repair model.

Leaflet height [mm] Area [mm2]
Anterior 24.6 586.7

Posterior (P2) 13.8 188.0
Posterior (P1/P3) 11.2 310.0

Figure 4.1: Geometry of the linear orthotropic edge–to–edge repaired model. Here the anterior leaflets are
visualised in red, the posterior in green and the chordae in blue. The central anterior and posterior leaflets
lengths are labelled, as are the anteroposterior and commissural diameters and the location of the edge–to–
edge repair (ETER).
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4.2.2 Material model

Here the material properties of the leaflets and chordae tendineae have been defined as linearly elas-

tic materials. The anterior and posterior leaflets have been modelled as an orthotropic membrane, the

stiffer fibre direction has been uniformed defined as aligned parallel to the annulus (circumferentially).

The properties used here have been obtained from a previously reported study by Votta et al. [102] (Ta-

ble 4.2). As before, the chordae tendeae have been modelled as beams which collapse under compres-

sion and only bear loads under tension. The elastic modulus of the chordae have been defined using

the same value used previously in Chapter 3, Section 3.2 (Table 4.2). Using standard LS–DYNA ma-

terial models, the leaflets and chordae tendineae have been implemented using MAT_ORTHOTROPIC_

ELASTIC and MAT_CABLE_DISCRETE_BEAM respectively [79, 80].

Table 4.2: Material parameters of the leaflet shell elements and chordal beam elements. Leaflet parameters
taken from Votta et al. [102]. Labels: t – leaflet thickness, ν – Poisson’s ratio, EC – circumferential elastic mod-
ulus, ER – radial elastic modulus, GC R – circumferential/radial shear modulus, A – chordal cross–sectional
area and E – chordal elastic modulus.

Leaflets/Chordae Parameter Value
Both leaflets t [mm] 1

ν [–] 0.45
Anterior leaflet EC [MPa] 6.2

ER [MPa] 2.1
GC R [MPa] 1.4

Posterior leaflet EC [MPa] 2.4
ER [MPa] 1.8

GC R [MPa] 0.7
Chordae A [mm2] 0.6

E [MPa] 40

4.2.3 Fluid model

In order to perform a fluid–structure interaction simulation, the valve model must be immersed within

a fluid volume. As highlighted in Chapter 3, Section 3.2 the geometry of this fluid volume has a strong

effect upon the resulting valvular dynamics. Thus in order to minimise these effects and focus upon the

valve, the fluid volume used here has been described with a straight outflow section with infinite fluid

boundaries (Figure 4.2). The size of the outflow section was determined by using computation fluid

dynamic simulations to determine the width at which the velocity magnitude was reduced to less than

1% of the maximum fluid velocity. Using the fluid–only solver ANSYS CFX v11, a steady state analysis

of the fluid field was performed using the same geometry and boundary conditions as shown in Figure

4.2. The width at which the velocity magnitude of the fluid in the symmetry plane was reduced to 1% of

the maximum jet velocity was found to be 60 mm (results not shown), the dimension to which the fluid–

structure interaction fluid volume was truncated to. The resulting fluid mesh consisted of 23200 solid

LS–DYNA ALE fluid elements, with a mesh designed such that the valvular orifice matched the shape of

the valve annulus (Figure 4.2).

4.2.4 Fluid parameters

Parameters have been chosen to reflect the higher density and dynamic viscosity of blood, which has

been modelled as a Newtonian fluid (Table 4.3). Here the fluid material model EOS_GRUNEISEN has

been used, in order to increase the maximum permittable time step the compressibility of the fluid has

been reduced (see Chapter 2, Section 2.4.2.2).
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Figure 4.2: Top left – Schematic of the fluid geometry, highlighting the inlet plane, annular orifice, no–slip
boundaries and free boundaries. Top right – Dimensional size of the fluid volume. Bottom – Finite element
mesh of the fluid volume.

Table 4.3: Newtonian fluid properties used to represent blood. Note that the bulk modulus has been reduced
in order to increase the maximum permittable time step (see Chapter 2, Section 2.4.2.2.

Parameter Value
Density [g·cm−3] 1.080

Dynamic viscosity [Pa·s] 0.0039
Fluid speed of sound [m·s] 148.4

4.2.5 Transvalvular pressure difference

In the structural–only model, the haemodynamic load of diastole has been applied as a uniform pres-

sure. Following the approach detailed by Dal Pan et al. [104], this transvalvular pressure difference is

defined as a function of the flow rate Q and the geometric orifice area A of the valve (Equation 4.1). Here

the geometric orifice area refers to the visible area of the valve, which has been calculated as ∼50% of
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the enclosed annular area in the initial configuration (Table 4.4).

In the fluid–structure interaction model the flow rate Q has been directly applied to the inlet plane of

the fluid volume and the pressure load on the valve has been determined from the numerical coupling

of the fluid and the structure, here performed using a penalty coupling method (Section 2.4.2.4). As the

flow rate is constant, these simulations are quasi–static. The fluid and structural boundary conditions

have been applied until the dynamic behaviour of the valve stabilises, which has occurs after ∼2s of

simulation time.

∆P = 0.16

�

Q

A

�2

(4.1)

Table 4.4: Parameters used to calculate the transvalvular pressure drop as defined by Equation 4.1.

Parameter Symbol Value
Flow rate [l·min−1] Q 16

Geometric orifice area [cm2] A 1.97
Pressure drop [mmHg] ∆P 10.55

4.2.6 Simulation details

As in previous structural–only simulations, the fluid effect has been approximated with the application

of the global nodal dampening factor of 0.9965 (Section 2.4.1.2) [111]. For the fluid–structure interac-

tion simulations the numerical coupling of the fluid and the structure has been performed by using a

penalty coupling method (Section 2.4.2.4). All simulations and post–processing were performed on a

Intel Xeon 2.66 GHz workstation with LS–DYNA 971 Release 4.2.1,LS–PREPOST 3.1, EnSight 9.1.2 and

MATLAB R2010b.

4.2.7 Valve deformation

The deformation of the valve has been compared in the structural–only and fluid–structure interaction

simulations (Figure 4.3). As shown previously in Chapter 3, Section 3.2.9 the deformed configuration of

the valve in quasi–static states are similar in both structural–only and fluid–structure interaction simu-

lations. Here this similarity is also noted as both open configurations of the valve are similar in profile,

with the fluid–structure interaction model showing a slight increase in deformation (Figure 4.3). In-

spection of the geometric orifice area, as viewed from the left ventricular side, are also similar in both

structural–only and fluid–structure interaction models (Figure 4.4).
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Figure 4.3: Nodal deformation in the anteropostero axis of the model in both the structural–only and fluid–
structure interaction simulations.
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4.2.8 Valve stresses

The distribution of the maximum principal stress of the deformed valve have been compared in the

structural–only and fluid–structure interaction simulations (Figure 4.4). Comparison of the maximum

magnitude of the principal stresses shows a ∼180% increase in the fluid–structure interaction case (Ta-

ble 4.5). Examination of the maximum principal stress distribution show significant differences, with

the fluid–structure interaction model showing larger stresses in all regions. However the peak stresses

are located in the same locations in both models, at the commissural region between the two leaflets

and at the location of the edge–to–edge repair.

Table 4.5: Comparison of the maximum principal stresses in the structural–only and fluid–structure interac-
tion models.

Model Maximum principal stress [kPa]
Structural–only 111.9

Fluid–structure interaction 324.2

Figure 4.4: Comparison of the maximum principal stress distribution in the the valve in the structural–only
(left) and fluid–structure interaction (right) simulations. Note that in the fluid–structure interction simula-
tions, the free edge of the leaflets has aligned with the flow direction and appears as a fold in this figure. Here
stress magnitudes greater than 0.15 MPa have been visualised in black.

4.2.9 Limitations

As the aim of these simulations were to assess the structural–only approach reported previously, this

work is subject to several limitations. Here the material model has been simplified by describing the

biomechanical response as linearly elastic, resulting in smaller deformations than in a non–linear model.

The geometry of the model has also been prescribed in its repaired configuration, thus any induced

stresses from this procedure have been neglected. Finally diastole has been modelled as a quasi–static

event, however diastole is a dynamic event. In order to simulate the full dynamics of filling during di-

astole, especially in the case of a surgically corrected valve in which the fluid transport is affected, it

is required to use a fluid–structure interaction method. All of these issues have been addressed in the

following section, Section 4.3.
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4.2.10 Summary

Here the structural–only approach based upon the transvavlvular flow rate and geometric orifice area,

originally reported by Dal Pan et al. [104], has been used to simulate the edge–to–edge repair in a

structural–only model. Comparison of this approach has been made against an equivalent fluid–structure

interaction model defined with the same flow rate. The results of these quasi–static simulations indicate

that in this model of the of edge–to–edge repair, structural–only and fluid–structure interaction meth-

ods result in similar deformed states and geometric orifice areas. However the resulting stress state is

significantly greater in the fluid–structure interaction case, with increases in the maximal value of the

maximum principal stress of ∼180%.

4.3 Percutanenous edge–to–edge repair

As stated previously in Section 4.2, all reported models of the edge–to–edge repair can be classified as

either structural–only or fluid–only. Structural–only models have been used to examine aspects of this

repair technique such as the associated stress increase in diastole from correction and the dual effect of

stitch location and length. Votta et al. [95] report that during diastole a repaired valve experiences prin-

cipal stresses comparable to that of systole, whereas Dal Pan et al. [104] and Avanzini [105] have shown

that the lateral positioning and length of the suture both have a positive effect in reducing the mag-

nitude of stress induced. These models have also shown that the uncorrected dilation of the annulus

in a simulated dysfunctional state result in a higher value of stress during diastole. Fluid–only models

have been used to study the effect of a double orifice (central leaflet correction) and an asymmetric sin-

gle orifice (commissural leaflet correction) on the haemodynamic properties of diastole. The results of

Redaelli et al. [106] indicate that the transvalvular pressure drop is a function of the total cross–sectional

area of the repaired valve. However fluid–only approaches do not account for the presence of the valve,

which in its repaired state increases the haemodynamic resistance during diastole [126].

As detailed above in the Section 4.2, the structural–only approaches used to analyse the stress state

of the valve during diastole underestimate the maximum magnitude of the maximum principal stress

by a factor of ∼1.8. Thus in order to correctly address the valvular and fluid dynamics of a corrected

valve during diastole, it is required to use fluid–structure interaction methods. In this section a fluid–

structure interaction model of a centrally corrected edge–to–edge repaired valve is presented in which

both normal (with annuloplasty) and percutaneous (without annuloplasty) approaches have been ex-

amined. Using non–linear material models to represent the mitral valve, the simulation of the coupled

function of the valve and blood have been performed in normal and dysfunctional states representative

of functional mitral valve regurgitation. Here this dysfunctional state has been simulated by annular

dilation, assuming that the biomechanical properties of both the leaflets and chordae remain constant

between the normal and dysfunctional states, a factor traditionally reflective of functional regurgitation.

Simulation of diastole has been performed and the resulting variation in stress states and fluid dynamics

in these corrected states have been then been compared to the uncorrected valve.

4.3.1 Normal valve model

The model presented here is referred to as the orthotropic model previously in Chapter 2. The model

geometry is based upon anatomical measurements reported from in/ex vivo sources and has been mod-

elled as symmetric about the anteropostero axis, allowing for the computational simplification of only

simulating half of the valve. The base of the model, the normal (undilated) annulus was defined as a

static and planar D–shaped orifice with an anteropostero and commissural diameters of 22.5 mm and

30 mm respectively (Figure 4.5). Using the centre of the anterior leaflet as a reference point, the annu-

lar extent of the valvular cusps was defined by scaling reported data [19] to the D–shaped orifice. The
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perimeter of the annulus and its enclosed area in the normal state are 8.67 cm and 5.54 cm2 respectively.

Extending from the annulus are the cusps of the leaflets, represented here by the larger anterior and

three smaller posterior cusps (Figure 4.5). Sized from anatomical measurements [11], the areas formed

by the leaflets have been meshed using rectangular shell elements. Measurements of the leaflet thick-

ness show regional differences between leaflets [54], however no detailed description of this variation

exists in the literature. This variation in thickness has been simplified by modelled both leaflets as uni-

formly equal to 1 mm. In total the mesh consisted of 4000 Belytschko–Lin–Tsay shell elements [79, 80],

the resolution was determined to be sufficient by performing a mesh independence analysis (see Chap-

ter 2, Section 2.4.1.1).

During valve closure inversion of the valve is prevented by the chordae tendineae, structures which

are classified by the anatomical position where they attach to the leaflet. Here only the marginal and

basal chordae have been included, which support the free edges of the leaflets and the base of the valve

near the annulus respectively. Anatomical observations indicate that the number and distribution of the

chordae vary significantly, for example the number of marginal chordae attached to the anterior leaflet

can range from 5 to 13 [16]. Here in this model, the distribution of the chordae has been defined in

order to achieve physiological coaptation under closure conditions. In total, the chordae consist of 1666

discrete beam/cable elements [79, 80]. The cross–sectional area of the marginal and basal chordae have

been taken as 0.45 mm2 and 1.15 mm2 respectively, as reported in Kunzelman and et al. [98]. Here the

density ρ of all valvular parts has been taken as ρ = 1 g · cm−3.

Figure 4.5: Finite element model of the mitral valve: (a) 3D view with finite element mesh superimposed , (b)
front view, (c) top down view (normal) and (d) top down view (dysfunctional).
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4.3.2 Dysfunctional valve model

In vivo echocardiographic comparison of human patients with both normal and regurgitant function

have shown that the annulus of the valve is more dilated in this dysfunctional state [28]. Under normal

conditions the annulus is a highly dynamic structure, varying in eccentricity1 from 0.57 at mid–systole

to 0.42 in mid–diastole. In dysfunctional states the annulus of the valve is less dynamic, varying from

0.50 in mid–systole from 0.42 to in mid–diastole [28].

Using the data reported by Kaplan et al. [28], a dysfunctional state was modelled by dilation of the

valvular orifice in the anteropostero axis. Following this, correction was simulated in two separate sce-

narios in order to examine the difference between traditional and endovascular techniques for the edge–

to–edge repair. Comparison of these states was performed against an undilated and uncorrected model,

which is referred to as the normal state.

Here a state of functional mitral valve regurgitation has been modelled where dysfunction is gen-

erated from a change in annular dimension, whilst the function of the leaflets and chordae has been

assumed to remain normal. The annulus of the model has been dilated in the anteropostero axis by a

factor of 1.11 which decreases the eccentricity from 0.66 to 0.56, consistent with the average reduction

in eccentricity of 15.5% during diastole as reported by Kaplan et al. [28] (see Figure 4.5). The result of

this dilation increased the leaflet surface area by 3.7%, annulus length to 8.96 cm and the annular ori-

fice area to 6.04 cm2. This modified geometry is the reference geometry for the dysfunctional state and

was defined as stress–free. Both normal and dysfunctional models have been defined using the same

material model which is described in the following Section 4.3.3.

4.3.3 Material model

The biomechanical response of the anterior and posterior leaflets have been defined using the biaxial

stress–strain experiments performed by May-Newman and Yin [54]. Using the reported stress–strain

curves, key data points have been discretised and input into the material model MAT_NONLINEAR_

ORTHOTROPIC in LS–DYNA [80] (Figure 4.6). Here the leaflets are modelled as membranes, thus reduced

integration across the shell thickness has been defined. The biomechanical response of the chordae

have been modelled as beams which generates force solely under tension. The non–linear tensile prop-

erties of the chordae have been defined from experimental data reported by Kunzelman and Cochran

[67] and were input into the material model MAT_CABLE_DISCRETE_BEAM [80].

4.3.4 Fluid–structure interaction model

Fluid–structure interaction has been performed by immersing the valve model into an overlapping U–

shaped fluid domain, volumetrically sized with left ventricular and atrial volumes of 85 and 35 ml re-

spectively (Figure 4.7) [1]. Although the ventricle has been defined using an un–physiologically rigid

volume, previous fluid–structure interaction analysis has shown that difference in valvular dynamics

exist between straight and more physiological U–shaped geometries [115] (see Chapter 3). Using a struc-

tured mesh, the volume was designed to include the shape of the mitral and aortic orifices (Figure 4.7).

The final meshed geometry of the fluid volume with the normal annulus consisted of 20430 LS–DYNA 8–

node brick elements. In the dilated geometry the larger orifice increased the number of fluid elements,

resulting in a fluid volume with 30618 elements.

Parameters have been chosen to reflect the higher density and dynamic viscosity of blood, which

has been modelled as a Newtonian fluid (Table 4.6). Here the fluid material model EOS_GRUNEISEN has

been used, in order to increase the maximum permittable time step the compressibility of the fluid has

been reduced (see Chapter 2, Section 2.4.2.2). Mesh independence was verified on a series of fluid–only

analyses by applying the pressure boundary condition of the full simulation up to maximum value of

1Eccentricity (e ) is defined as e =
p

a 2−b 2

a , where a and b are the major and minor axes of the orifice.
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Figure 4.6: Stress–strain curves used to define the circumferential and radial elastic moduli in the anterior
and posterior leaflets. Here the experimental data of May-Newman and Yin [54] is represented using the
following figure labels: # – anterior circumferential, Í – anterior radial, – posterior circumferential and Î
– posterior radial.

pressure described in Figure 4.8 (see Chapter 2, Section 2.2.2). In these simulations coupling of the fluid

to the structure has been performed using a penalty coupling method [79, 80] (see Section 2.4.2.4).

Table 4.6: Newtonian fluid properties used to represent blood. Note that the bulk modulus has been reduced
in order to increase the maximum permittable time step (see Chapter 2, Section 2.4.2.2).

Parameter Value
Density [g·cm−3] 1.080

Dynamic viscosity [Pa·s] 0.0039
Fluid speed of sound [m·s] 148.4

4.3.5 Simulation of diastole

Previous transient fluid–structure interaction simulations of a single cardiac cycle (∼1000ms) with the

available computer equipment has been shown to require∼100 hours of computer time [115]. Here the

focus is in the diastolic component of the cardiac cycle, thus these simulations have been limited to

this portion of the cycle. The transvalvular pressure difference across the valvular orifice during diastole

has been represented using a 6th order Fourier series (Figure 4.8). Here the the units of pressure and

time are defined as mmHg and ms respectively. In the dysfunctional states, prior to the application of

this diastolic pressure difference which signifies the start of diastole, the simulation of the edge–to–edge

repair is performed as detailed in the following section.

∆P(t ) = a 0+
6
∑

n=1

a n cos(nw t )+
6
∑

n=1

bn sin(nw t ) (4.2)
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Figure 4.7: (a) Fluid volume geometry in which the mitral valve model is immersed into (highlighted in red), (b) top down view of the normal mesh with the valvular orifices highlighted in
white, (c) top down view of the dilated mitral annulus model and (d) side view of the normal fluid volume mesh. The volume of the atrial and ventricular chambers were sized to 35 ml and 85
ml respectively.
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Figure 4.8: Transvalvular pressure difference between left atrium and ventricle during diastole. The zero
pressure difference marks the pressure cross–over points in the cardiac cycle, indicating the start and end
of diastole. Average transvalvular pressure was 0.52 kPa (3.9 mmHg). Data after Levick [1]. The coefficients
of Equation 4.2 are as follows: a 0 = −6.299, a 1 = −13.21, a 2 = 0.7083, a 3 = 8.703, a 4 = 7.035, a 5 = 2.608,
a 6 = 0.2057, b1 = 13.55, b2 = 16.41, b3 = 8.148, b4 = 0.2259, b5 =−1.848, b6 =−1.006 and w = 0.01185.

4.3.6 Simulation of valve repair

As detailed previously, here the edge–to–edge repair has been examined in two different scenarios. The

first is a standard surgical approach in which annuloplasty is concurrently applied, the second is an

endovascular approach in which only the edge–to–edge repair is performed as annuloplasty cannot be

applied (Figure 4.9). Here the edge–to–edge repair has been defined as the central correction of the an-

terior and posterior leaflets. The suturing together of the opposing leaflet segments has been simulated

by first connecting the two leaflets, over a width of 2 mm on both sides, with thermal beam elements.

Following this, a negative thermal load (a linear ramp of -5◦C over 100 ms) was used to contract these

beams, virtually suturing the two edges (Figure 4.10). This single Hughes–Liu beam was defined with

a density of 1 g · cm−3, an elastic modulus of 1 MPa and a thermal coefficient of expansion 1 ◦C−1. The

values of these parameters were set to reduce the length of the beam connecting both leaflet edges by

∼99%, ensuring the connection of the two leaflet portions.

Both repair scenarios are performed using the dysfunctional state generated though valvular dila-

tion (see Section 4.3.2). In the percutaneous approach only edge–to–edge is applied, therefore only the

thermal beams are contracted and the annulus remains dilated. In the standard case the effect of a rigid

annuloplasty ring and the edge–to–edge repair are mimicked by simultaneously contracting the ther-

mal beams and displacing the nodes of the dilated annulus back to the initial D–shape of the normal

annulus. Simulated separately to the fluid–structure interaction simulation of diastole, the valve repair

has been performed using structural–only simulations for computational efficiency. The dampening ef-

fect of the fluid was approximated by using a global nodal damping factor of 0.9965, based on previous

experimental results [111] (see Chapter 2, Section 2.4.1.2). The final configuration (geometry and stress

state) has been used as the initial state for the corresponding fluid–structure interaction simulations,

prior to which the thermal beam elements were switched from deformable to rigid objects. The defor-

mation of the valve and the resultant maximum principal stresses following the valve repair, in both

cases, are shown in Figure 4.10.
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Initial configuration

Dilate valve by n%

ETER ETER & AP

FSI

Figure 4.9: Valve correction simulation flow. Labels: ETER – edge–to–edge repair, AP – annuloplasty and FSI
– fluid–structure interaction.

Figure 4.10: Simulation of the edge–to–edge correction in the dilated mitral valve model; (a) maximum prin-
cipal stress distribution in its final state, t̄= t/tmax = 1, without (left) and with (right) annuloplasty; (b) the
corresponding deformation at t̄= t/tmax = 0/3, 1/3 and 2/3, without (left) and with (right) annuloplasty.

4.3.7 Valve dynamics

Here the response of the valve in both normal and dysfunctional states are compared. The values of the

maximum principal stresses induced in the normal and two dysfunctional models are listed in Table 4.7.

The deformation and stress distribution in each model at its maximum principal stress is visualised in

Figure 4.11.

During diastole the stresses in the uncorrected valve are small, however the effect of the edge–to–

edge repair increases the maximum principal stress by∼200% (Table 4.7). The maximum diastolic prin-

cipal stresses in the repaired valves equate to 65% (edge–to–edge repair with annuloplasty) and 68%

(edge–to–edge repair only) of the maximum principal stress observed in the same model during systolic

closure only (∼300 kPa). Using a linear elastic orthotropic model, Votta et al. [95] performed simulations

of the edge–to–edge repair, showing the maximum diastolic stress in a repaired state is comparable to

the maximum systolic stress. Similar analysis by Dal Pan et al. [104] reports the maximum diastolic

stress as 71% of the systolic stress. The inconsistencies of these values can be attributed to the fact that

structural models are not adequate to model diastole which is a transient event, where the valve is in

dynamic motion and the pressure load is non–uniform over the valve surface.

Although the magnitude of stresses are similar in both edge–to–edge repair cases, the distribution

of stress differs. Comparison of stress at the local maximum of each model shows that with the edge–
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to–edge repair only a concentrated stress distribution is located at the suture, compared to the edge–to–

edge repair with annuloplasty case where the stresses are redistributed along the free margin of leaflets

(Figure 4.11). This reduction in stress between corrected and uncorrected annular dilation has also been

highlighted in previous simulations [95, 104].

Clinical results have shown that the repair of the valve without the application of an annuloplasty

ring has suboptimal performance [122]. Although the etiologies of heart valve disease are numerous, it

has been possible to explore in detail the effect of one factor here in this model: annular dilation. In this

case it has been shown that valve correction without the application of annuloplasty induces a higher

maximum stress and a more concentrated stress pattern. This has particular impact upon percutaneous

techniques whereby the edge–to–edge repair is the only available option.

Table 4.7: Maximum principal stress in normal and repaired models. Labels: ETER – edge–to–edge repair
and AP – annuloplasty.

Model Max. principal stress (kPa)
Normal 69.7

ETER & AP 195.8
ETER only 205.5

Figure 4.11: Valve deformation and maximum principal stress distribution at the local maximum of the prin-
cipal stress in each model as viewed from the ventricular side of the valve in the (a) normal valve (t= 42
ms),(b) edge–to–edge repaired valve with annuloplasty (t = 340 ms) and (c) the edge–to–edge repaired only
valve (t = 101 ms).
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4.3.8 Fluid dynamics

Here the effect of the edge–to–edge repair on the fluid dynamics have in the dysfunctional states have

been compared against the normal valve model. The flow rate through the orifice throughout the di-

astolic cycle in both corrected and normal models are visualised and listed in Figure 4.12 and Table

4.8 respectively. Comparison of the velocity magnitude downstream of the valve is visualised using the

plane located in the centre of the valve, parallel to the anteropostero axis in Figure 4.13. The associated

fluid motion through the orifice has also been analysed using particle tracing as shown in Figure 4.14.

Comparison of the flow rate shows that the edge–to–edge repair impairs the rapid fluid transport

ability of the valve (Figure 4.12). The initial flow rate between the normal and repaired valves are com-

parative over the initial 20 ms of the diastolic simulations. Beyond this point, the difference in magni-

tude rises to over 100 cm3·s−1 as the repaired valves are unable to deform freely and increase the flow

rate. This is highlighted by the location of the maximum flow rate (Figure 4.12) which occurs at∼360 ms

in the normal model (13.4 l ·min−1) and ∼40 ms in the two repaired valves (7.5 and 6.8 l ·min−1 for the

edge–to–edge repair only and the edge–to–edge repair with annuloplasty).

Downstream of the valve, the maximum magnitude of the fluid velocity has been measured as ∼0.8

m·s−1 in all three models (Figure 4.13). This value corresponds to expected physiological values during

diastole [115]. Particle traces at the maximum velocity point in the cycle highlight that the fluid field in

the corrected cases contain large areas of rotation (Figure 4.14).

Time [ms]

Fl
ow

 ra
te

 [c
m

3 s-1
]

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250
Normal
ETER-AP
ETER

Figure 4.12: Flow rate through mitral orifice in the normal valve, edge–to–edge repaired valve with annulo-
plasty and the edge–to–edge repaired only valve.

Table 4.8: Maximum value of the flow rates in the normal, edge–to–edge repaired valve with annuloplasty
and the edge–to–edge repaired only valve. Labels: ETER – edge–to–edge repair and AP – annuloplasty.

Model Flow rate (cm3·s−1) Flow rate (l·min−1)
Normal 224 13.4

ETER & AP 114 6.8
ETER only 125 7.5
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Figure 4.13: Fluid velocity distribution through a plane centred in the valve model in the (a) normal valve,
(b) edge–to–edge repaired valve with annuloplasty and (c) edge–to–edge repaired only valve. All figures visu-
alised at t = 365 ms, the point at which the global maximum fluid velocity was observed.

4.3.9 Limitations

This study only analyses the effect of a centrally located suture, lateral suture positions have not been

examined. However the central suture corresponds to the most severe scenario in terms of the leaflet

stress distribution as reported in previous structural analyses of the edge–to–edge repair technique [105,

104, 95]. Here the annulus of the valve was modelled as a static planar object, neglecting its dynamic

motion, which adopts a ‘saddle’ shape in the systolic phase [12]. This has been shown to reduce stress

concentrations during valve closure [89]. However, the focus of this study was the diastolic peak where

the role of the annulus dynamics in the reduction of stress is reduced. In this model the biomechanical

response of the functionally regurgitant valve was assumed to be identical to the normal valve. However,

echocardiographic studies by Chaput et al. [128] have shown that functional mitral regurgitation results

in increased valve leaflet area/volume, a change that will directly affect the biomechanical response of

the valve. It is important to note that no data has been reported which has characterised the biaxial

mechanical behaviour of mitral valve tissue in this state.

The fluid volume used in this analysis has several simplifications regarding its geometry and dynam-

ics of its boundaries. Here the ventricular chamber was designed as a rigid U–shaped volume with an

open aortic position, factors which are all unphysiological. Also in functional regurgitant states the left

ventricular volume is dilated, a factor ignored here as this model of dysfunction only includes valvular

changes.

118



4.3. Percutanenous edge–to–edge repair Chapter 4. Valvular Repair Techniques

Figure 4.14: Particle traces of the fluid field taken at t = 365 ms. Particles were seeded from a plane located
10 mm above the valve orifice in the (a) normal valve, (b) edge–to–edge repaired valve with annuloplasty and
(c) edge–to–edge repaired only valve.

As the valve was defined in its unstressed open configuration at the beginning of the diastole, and the

motion of the ventricular wall was neglected, the results obtained during the initial phases of opening

are approximated. Analysis of the stress state of the mitral valve has been performed when the valve is

fully opened, when the effects of ventricular dynamics are reduced and the maximum principal stresses

are constant. Previous analysis [115] of a single cardiac cycle (open–closed–open) has shown that during

the second open period, when the valve is fully open, the maximum principal stresses are constant.

In the structural model of the valve the leaflets are represented by constant stress elements, in which

the calculated stress is uniform over each shell. In the edge–to–edge only simulation a strong stress

concentration was noted at the position of the repair (Figure 4.11), upon inspection this was found to be

localised within a single element. In order to assess the exact spatial extent of this stress concentration,

further simulations with increased mesh resolutions are required.

4.3.10 Summary

Here the functional response of the valve and associated fluid dynamics in a simulated dysfunctional

state and subsequent surgical repair has been performed. Diastole was simulated using a fluid–structure

interaction method with non–linear orthotropic material models used to described the mechanical re-

sponse of the leaflets and chordae. Simulation of dysfunction has been performed by dilating the valve

in the anteropostero axis to match the eccentricities reported in vivo in cases of functional mitral valve

regurgitation and subsequently corrected in two separate simulations: edge–to–edge repair with and

without annuloplasty.

The results of the fluid–structure interaction simulations have shown that the maximum principal

stresses induced in both corrected cases are 200% larger in a repaired valve compared to a normal valve.

Although the maximum of both corrected scenarios are similar in magnitude, the distribution of the

stress between the two cases differ significantly, with high stress concentrations in the dilated model

with the edge–to–edge repair only. Typically stresses in the mitral valve in this portion of the cardiac
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cycle are low. Stress reduction will therefore be beneficial in minimising the detrimental effects of the

edge–to–edge repair.

The fluid dynamics of filling are also affected, with highly directed flow generated by the edge–to–

edge repair. Similar magnitudes of the velocity are observed downstream of the valve, however the re-

paired valves exhibited diminished flow rates throughout the diastolic cycle, such that the peak flow rate

was shifted from the end of the simulation to the start of diastole.

4.4 Context

Although previous structural–only and fluid–only models of the edge–to–edge repair exist, this work is

the first to simulate this particular valve repair technique using a fluid–structure interaction method.

As shown in Section 4.2 significant differences are observed between quasi–static structural–only and

fluid–structure interaction approaches to the edge–to–edge repair, with stresses ∼180% greater in the

fluid–structure interaction cases. Full transient fluid–structure interaction of the edge–to–edge repair

has explored in a model of valvular dysfunction in Section 4.3.6, whereby a normal valve model has

been subjected to a simulated annular dilation and subsequently repaired with the edge–to–edge repair

using standard and percutaneous methods. The results of these simulations indicate that there is an

improved states of stress in the case of the edge–to–edge repair with annuloplasty (standard method),

however at the cost of slightly reduced flow rate.
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Chapter 5

Valve Remodelling and Growth

As detailed previously, the biomechanical properties of the different subvalvular components of the

valve are key to correct valvular function. Although the ability to withstand the haemodyanmics load

of systole and rapidly transition from closed to open in diastole are derived primarily from the colla-

gen and elastin constituents of the leaflets [49], it is the proportions, microstructural organisation and

fibre orientation of these constituents which provides these properties (see Chapter 1, Section 1.4). In

normal states, cellular processes within the tissue homeostatically maintain the biomechanical prop-

erties of these constituents. However it is the gradual loss of this tissue regulation which is considered

to be the cause behind valvular disease [129], such as in myxomatous degeneration where deviations

in the constituent properties and organisation result in dysfunctional states which are characterised by

a loss in mechanical strength and abnormal constitutive proportions and organisation. Myxomatous

degeneration increases in the content of collagen (the load bearing component of the microstructure)

are reported [61, 60], however the load bearing strength is deceased as the organisation of the fibrous

microstructure decreases resulting in a loss of biomechanical strength [62].

The homeostatic regulation of the tissue is a complex biological process, which is typically assessed

in vitro in cultured cell populations. However such techniques cannot truly represent the in vivo en-

vironment of the tissue, such as the stresses and strains induced from the cyclic loading of the cardiac

cycle. Through numerical models, such as those presented here, the biological response of the tissue to

the in vivo environment can be assessed. In order to examine the role between mechanical stimuli and

the associated biological events, it is required to build abstract models that encompass the resulting bi-

ological activity (i.e. remodelling1 or growth2) without including exact detail of the biological function.

For example, in this work the biological response of the tissue has been simplified to be a function of

mechanistic inputs (stresses/strains). Although disconnected from the exact biological function, these

models can be used to gain insight into possible mechanisms through which biological function are

abstractly linked to the mechanistic environment in terms of the stresses and strains.

Within the context of the mital valve, here the following two issues related to remodelling and growth

have been examined:

(1) Fibre orientation remodelling – Remodelling of the microstructure, in terms of the reorien-

tation of the fibre direction, has been performed in the anterior belly region of a full mitral valve

model. Using a stress–based approach, it has been examined if an arbitrary fibre distribution

can be remodelled to a more physiological distribution solely based upon the stress state. De-

fined initially with a uniform fibre distribution and subjected to normal systolic pressures, the

fibre distribution has been remodelled relative to the first and second principal stresses with the

resulting fibre distributions qualitatively compared to experimental results (Section 5.2).

1Remodelling is defined as a change in the existing microstructure of the tissue.
2Growth is defined as a change in mass of the existing structure.
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(2) Leaflet growth – Growth in response to a simulated ischemic mitral regurgitation, in terms of

increasing the leaflet thickness, has been performed in a partial model of the mitral valve. Us-

ing a stress–based approach, the growth response is defined using the difference between the

maximum principal stresses in the normal and dysfunctional states induced during systolic clo-

sure. Following the growth phase, the resulting stress distribution is compared to the normal and

dysfunctional states (Section 5.3).

To the author’s knowledge, the work presented here are the first studies into growth and remodelling

effects on the mitral valve.

5.1 Biological background

The leaflet tissue consists of an extracellular matrix which is divided into three layers: the fibrosa, spon-

giosa and the ventricularis (see Chapter 1, Section 1.4.1). The composition, organisation and orienta-

tion of the constituent components within this extracellular matrix result in a controlled biomechanical

balance between the required stiffness and flexibility. Homeostatic regulation of these biomechanical

properties are governed by cells referred to as valvular interstitial cells, which are embedded within the

extracellular matrix. In normal states, these cells are primarily quiescent and maintain baseline levels of

extracellular matrix turnover, however when required these cells are able to enter active states in which

the expression of the constitutive components are increased [129]. It is this modulation between qui-

escent and active states that enables the valve to adapt to its operational environment for example in

response to injury or increasing haemodynamic load in child/adult development [130, 131]. It is con-

sidered that the disruption of this modulation, which causes a maladaptive response of the extracellular

matrix, is the origin of heart valve disease [129].

Although the link between the mechanical environment and the adaptation/maladaptation of the

extracellular matrix is not a clearly understood process, this relationship has been observed in vivo. An-

imal experiments by Dal-Bianco et al. [132] have shown that ovine mitral valves subjected to abnormal

mechanical loads, in the case of simulated ischemic regurgitation, respond by increasing mass and re-

organisation of the leaflet microstructure. Similarly, measurements of leaflet areas in cases of functional

mitral regurgitation in human subjects by Chaput et al. [128] have shown that leaflet areas are larger in

dysfunctional states. In order to examine the functional link between changes in the leaflet microstruc-

ture and the stresses/strains, abstracted models of the adaptation/maladaptation process have been

implemented and examined in a model of the mitral valve.

5.2 Valve remodelling

As detailed previously in Chapter 1, Section 1.4, the anisotropic, non–linear biomechanical response of

the mitral valve leaflets is characterised by the predominant collagen fibre direction [54]. Experimental

measurements of the fibre orientation indicate that the fibres are non–uniformly distributed and aligned

towards key anatomical structures, such as the insertion of the chordae tendineae into the leaflet sur-

face [52, 41] (Figure 5.1). In previous numerical models this fibre distribution has either been defined

individually in each anatomical region, or simplified as uniformly aligned as parallel to the annulus (Ta-

ble 5.1). Although numerically more efficient to implement, uniformly orientated models (for example

see Votta et al. [32]) report greater maximum principal stresses than non–uniformly orientated models

(for example see Prot et al. [92]) as the load is not distributed as equally.

In these non–uniform models the fibre orientation has been based upon the experimental data, of

which there is only one source, reported by Cochran et al. [52]. Using this data, the orientation of the

predominant fibre direction has been mapped to the geometry of the different valve models (Table 5.1).
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Although defined anatomically, the orientation of these fibres in these models have been defined arbi-

trarily rather than functionally, i.e. based upon the functional requirements of the tissue as observed

with the fibre alignment at sites of chordal insertions [41]. Using a discrete fibre model, the functional

remodelling of the fibre orientation within the leaflet has been modelled using a stress–based approach

as detailed below in Section 5.2.5. By comparing the induced stresses and strains, this stress–based ap-

proach has been evaluated as a possible mechanism through which functional and physiological fibre

distributions are generated.

Figure 5.1: Experimental measurement of the predominant fibre orientation in the mitral valve leaflets. Im-
age after Einstein et al. [76].

Table 5.1: Comparison of the different fibre distributions used in previous non–linearly elastic numerical
studies of the mitral valve. Labels: Local fibre alignment – individually aligned, anatomically mapped fi-
bre distributions and Global fibre alignment – uniformly aligned fibre distribution orientated parallel to the
annulus.

Model Local fibre alignment Global fibre alignment
Einstein et al. [76] 2� �
Einstein et al. [96] 2� �
Einstein et al. [97] 2� �

Prot et al. [74] � 2�
Votta et al. [32] � 2�

Prot and Skallerud [91] 2� �
Prot et al. [92] 2� �

Stevanella et al. [94] � 2�
Prot et al. [64] 2� �

Skallerud et al. [93] 2� �
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5.2.1 Valve geometry

The model presented here is referred to as the hyperelastic model previously in Chapter 2. The geometry

of this valve model is based upon anatomical measurements reported from in/ex vivo sources. Here the

valve has been modelled as symmetric about the anteropostero axis which allows for the computational

simplification of only simulating half the valve.

Forming the base of this model is the annulus, here defined as a static and planar D–shaped orifice

with an anteropostero and commissural diameters of 22.5 mm and 30 mm respectively. Using the centre

of the anterior leaflet as a reference point, the annular extent of the valvular cusps was defined by scaling

reported anatomical measurements by Kunzelman et al. [11] to the D–shaped orifice. The perimeter of

the annulus and its enclosed area are 8.67 cm and 5.54 cm2 respectively. Extending from the annulus

are the anterior and posterior cusps of the leaflets. Sized from anatomical measurements by Kunzelman

et al. [11], the leaflets are modelled as a continuous band of tissue. The anterior and posterior leaflets

have been individually defined with a single cusp each (Figure 5.2). Experimental measurements of the

leaflet thickness show regional differences between leaflets [54], however as no detailed description of

this variation is reported the leaflets have been defined with a uniform thickness of 1 mm.

During valve closure, inversion of the valve is prevented by the chordae tendineae, structures which

are classified by the anatomical position of leaflet attachment. In this mode the marginal, basal and strut

chordae have all been included. The thinner marginal chordae support the free edges of the leaflets

whereas the thicker basal and strut chordae support the base and the central anterior regions of the

valve leaflets respectively. The cross–sectional area of the marginal and basal/strut chordae have been

taken as 0.45 mm2 and 1.15 mm2 respectively, as reported in Kunzelman and et al. [98]. The chordae are

connected to the papillary muscles, here represented as two static nodes positioned in a plane 20 mm

above the annulus. The lateral distance between the two tips has been defined in the range 19.5 mm

to 21 mm, a value scaled relative to the annular diameter from experimentally reported measurements

[110]. The anteropostero position of the these tips was modified to achieve physiological coaptation

under closure conditions.

5.2.2 Material model

In this model both the leaflets and chordae have both been modelled as non–linear elastic materials

using a combination of standard and custom user defined LS–DYNA material models respectively.

5.2.2.1 Leaflet material model

Described in detail in Chapter 2, Section 2.3.1.3, the leaflets have been modelled as a transversely isotr-

opic, non–linear, anisotropic, hyperelastic membrane following the numerical approach documented

by Einstein et al. [78]. Based upon a finite strain approach, the stress response of this material model is

defined as a function the deformation of the body. The formulation of this method is detailed in Chapter

1, Section 1.4.3, thus the exact details are omitted for brevity.

Deformation of the leaflet material is characterised through the deformation gradient F which de-

scribes the spatial derivative in the initial basis, of the current deformed state of the leaflets (see Figure

1.17 on Page 39). Embedded in the plane of the leaflet structure are a family of fibres, initially orien-

tated in the direction defined by the unit vector a0 = [a 01, a 02, 0]. Convected with the deformation of the

structure, the associated change in length of these fibres λ f can be calculated as a function of the defor-

mation gradient F. Using the associated right Cauchy–Green stretch tensor, which is defined as C= FTF,

in conjunction with the square of the embedded fibre stretch λ2
f the anisotropic mechanical response

of the leaflet tissue can be described using an exponential strain–energy function [73] (Equation (5.1). A

scalar valued function, here the terms I1 and I4 are the first and fourth invariants of the tensor C which

describe the volumetric deformation and the square of the fibre–direction stretch respectively (Equa-
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Figure 5.2: Three–dimensional, front and top views of the mitral valve model. The anterior and posterior
leaflets are respectively coloured red and green. The blue beams represent the cordae tendineae. Here the
leaflet lengths, anteropostero diameter and commissural diameter have been labelled. The geometry of the
model has been reflected in the axis of symmetry.

tions 5.2 and 5.3). The associated parameters c0,c1 and c2 for both anterior and posterior leaflets have

been taken from experimental values reported in the literature [73]. Examples of the stress response

of this material model under biaxial stretch, in both the anterior and posterior leaflet, are illustrated in

Figures 5.3a and 5.3b.

ψ(I1, I4) = c0

�

exp
h

c1(I1−3)2+ c2(
p

I4−1)4
i

−1
�

(5.1)

I1 = tr(C) =C11+C22+C33 (5.2)

I4 =λ2
f = a0 · (C a0) = a 01C11a 01+a 01C12a 02+a 02C21a 01+a 02C22a 02 (5.3)

Table 5.2: Strain–energy function coefficients of Equation 5.1. Values from May-Newman and Yin [73].

Leaflet c0 [kPa] c1 c2

Anterior 0.399 4.535 1446.5
Posterior 0.414 4.848 305.4

5.2.2.2 Chordae material model

The non–linear material response of the chordae tendineae have been modelled using the experimental

measurements reported by Kunzelman and Cochran [67] (Figure 5.3c). As no experimental data on the

non–linear stress–strain behaviour of the strut chordae exist, the strut chordae have been defined with

the same properties as the basal chordae. The cross–sectional areas of the marginal, basal/strut chordae

125



5.2. Valve remodelling Chapter 5. Valve Remodelling and Growth

are defined as 0.45 and 1.15 mm2 respectively.
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Figure 5.3: (a) and (b): Mitral valve leaflet material model stress response to in–plane equibiaxial stretch λ
in (a) the anterior leaflet and (b) posterior leaflet. Note the difference in the stress scale. The values of the
deformation gradient are defined as F11 = F22 =λ and F33 = (F11F22)−1, as described previously in Equation 1.6
on Page 39. (c): Non–linear stress–strain behaviour of the marginal and basal chordae tendineae. Data after
Kunzelman and Cochran [67].

5.2.3 Finite element mesh

The geometry of the valve leaflets and chordae tendineae have been discretised by using co–rotational

Hughes–Liu shell and discrete cable elements respectively [79, 80]. The leaflets consist of 3920 co–

rotational Hughes–Liu shell elements in total, with 1680 and 2240 elements used in the anterior and

posterior leaflets respectively. The free margin of the leaflets are supported by the primary/marginal

chordae tendineae, which have been discretised into 143 discrete cable elements. Similarly the basal and

central portion of the anterior leaflet are supported by the secondary/basal and strut chordae tendineae

respectively, which consist of 143 and 6 discrete cable elements respectively. In order to simplify the

numerical complexity of the problem only half the valve has been simulated, with the valve modelled as

symmetrical about the anteropostero axis (Figure 5.4).
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Figure 5.4: Three–dimensional view of the finite element mesh used. The anterior and posterior leaflets are
respectively coloured red and green. The blue beams represent the chordae tendineae. Here the model has
been reflected in its the axis of symmetry.

5.2.4 Valve closure

It has been assumed that the remodelling process occurs solely as a consequence of the stresses induced

during valve closure, thus only the systolic portion of the cardiac cycle has been simulated. Structural–

only simulations of closure have been performed by applying the systolic transvalvular pressure differ-

ence shown in Figure 5.5. Performed in a structural–only model this pressure load has been defined

as uniform over the surface of the leaflets, a factor which has been shown previously in Chapter 3 to

affect the dynamics of closure. However as it is the stress state of the leaflets which are of interest, the

structural–only approach used here has been deemed an appropriate simplification.

As a structural–only model, the dampening effect of the blood has been approximated (see Chapter

2, Section 2.4.1.2) by increasing the density of the structure by a factor of ten following the approach

taken by Kunzelman et al. [85] and Schievano et al. [103] (ρ = 10.0 g · cm−3).
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Figure 5.5: Systolic transvalvular pressure difference used to simulate closure. Data after Levick [1].
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5.2.5 Fibre remodelling

The remodelling process through which the microstructure of the leaflet tissue adapts has been based

upon the stress–based approach, a decision based upon the in vitro experiments of Merryman et al. [133]

that indicate that valvular interstitial cells respond to increased levels of stress. Following the approach

previously reported by Driessen et al. [134], in which remodelling of the the fibre orientation in response

to closure has been performed in a structural–only model of the aortic valve, this methodology has been

adapted and applied to closure of the mitral valve. The process through which the fibres are remodelled

has been briefly summarised in Figure 5.6.

As described previously, the initial fibre orientation of both leaflets has been defined as uniformly

orientated parallel to the annulus. The initial fibre direction a0 = [a 01, a 02, 0] and the orthogonal cross–

fibre orientation are both illustrated in Figure 5.7. Using this initial fibre distribution, valve closure has

been simulated with the resulting stress distribution at closure used to update the fibre orientation,

completing a single iteration. Using this updated fibre orientation, closure is re–simulated and the fibre

distributions are updated iteratively. Here the extent of remodelling has been simplified by restricting

the remodelled regions to the elements which form the belly region of the anterior leaflet, as highlighted

in Figure 5.9 on Page 131. This remodelling approach has been applied over two iterations.

Initial fibre distribution

Simulate valve closure

Calculate preferred angle (∆θp )

Adjust fibre distribution

Figure 5.6: Stress based remodelling algorithm.

Remodelling algorithm

As described above, it has been assumed that remodelling of the leaflet microstructure occurs through

fibre reorientation in response to the induced stresses during closure. From the stress state at closure,

the variation in fibre angle ∆θ is calculated as a function of the ratio of extra stresses in the first and

second principal stress directions. The extra stresses σ̃ are determined from subtracting the hydrostatic

pressure of the material p from the the Cauchy stress tensorσ (Equation (5.4). As the leaflets have been

defined as a membrane, the value of the hydrostatic pressure p is defined to enforce the membrane

conditionσ33 = 0 [78] (see Equation 1.18 on Page 41).

The contribution of the extra stress tensor in the first two principal stress directions (v1 and v2 re-

spectively) is calculated in the deformed configuration and referred to as σ1 and σ2 (Equations 5.5 and

5.6). As only tensile stresses (i.e. σi > 0 where i = 1, 2) are assumed to contribute to remodelling, the

contribution of the extra stresses are defined through the response functions g 1 and g 2 (Equation 5.7).

From the ratio of these two response functions the preferred fibre angle θp is defined, which is orientated

relative to the first principal stress direction v1 (Equation 5.8). The change in angle orientation ∆θ be-

tween successive iterations is defined as a function of the preferred fibre angle θp and the reorientation

constant k , here set to unity (Equation 5.9).

The effect of this algorithm is to align the fibre angle in the direction of the largest principal stress,

as illustrated by the two examples detailed in Figure 5.8. In Figure 5.8a the extra stress contributions in

the two principal stress directions (v1 and v2) are of similar magnitude reflective of a biaxially loaded

state of stress, as σ1 ' σ2. The preferred fibre direction is defined as orientated equally between v1
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(a) Circumferential (b) Radial

Figure 5.7: Initial fibre orientation in the anterior and posterior leaflets; (a) – fibre direction aligned in the circumferential direction parallel to the annulus. (b) – cross fibre direction aligned in
the radial direction orthogonal to the circumferential direction.
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and v2 directions and θ → 45◦. In Figure 5.8b the extra stress contributions in the two principal stress

directions are of unequal magnitude reflective of a uniaxially loaded state of stress, as σ1 > σ2. In this

case the preferred fibre direction is orientated further towards v1 as θ → 0◦ (or θ → 90◦ in the case of

σ2 >σ1).

σ = p I+ σ̃ (5.4)

σ1 = v1 · (σ̃v1) (5.5)

σ2 = v2 · (σ̃v2) (5.6)

g i =







σi ifσi ≥ 0

0 ifσi < 0
where i = 1, 2 (5.7)

θp = arctan

�

g 2

g 1

�

(5.8)

∆θ = kθp (5.9)

θp g1

g2

σ1 ≃ σ2

v1

v2

(a) Equal principal stress contributions

θp
g1

g2
σ1 > σ2

v1

v2

(b) Unequal principal stress contributions

Figure 5.8: (a) – example of the preferred fibre angle direction θp whereσ1 'σ2, here the stress contributions
between the first and second principal stress directions are similar in magnitude thus the preferred angle is
orientated equally between the v1 and v1 directions. (b) – example of the preferred fibre angle direction θp

where σ1 > σ2, here the stress contributions between the first and second principal stress directions are
greater in the v1 thus the preferred fibre angle is orientated further towards the v1 direction.

5.2.6 Remodelling response

Following the approach detailed previously, the fibre distribution has been remodelled over two itera-

tions in base of the anterior leaflet of the valve using the extra stress contribution obtained at the end

of closure. Here only the changes in fibre orientation are examined, the stress distributions from which

this reorientation is derived from are presented below in Section 5.2.7.

The regions of greatest variation in fibre angle, over both iterations, was found to be in the central

region of the anterior leaflet towards in the symmetry plane of the model (Figure 5.9). Smaller regions

away from the centre of the leaflets also show large variation in fibre angle around the chordal insertion.

The size of both these regions decreases between the initial and first remodelled iterations. The area

of least reorientation was found to be towards the symmetry plane of the valve surrounding the strut

chordae insertion, indicating the maximum principal stress direction in this region is predominantly

aligned in the initial fibre direction.

Inspection of the individual fibre orientation shows that in the first remodelled iteration the majority
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of fibres are perturbed towards the radial direction (Figure 5.10). The majority of fibre rotation occurs

towards the base of the leaflet, in the vicinity near the symmetry plane and around the chordal insertion

away from the symmetry plane. In the second iteration the majority of the fibres are perturbed further

towards the radial direction such that the fibre direction is approximately aligned equally between the

circumferential and radial directions. Towards the symmetry plane the elements progressively rotate to-

wards the radial direction, such that the centre of the leaflet the fibre direction is approximately aligned

in the radial direction. Similar rotations are observed at the top of the remodelled region.

Comparison with the experimentally measured fibre orientation described previously show similar

features such as fibre rotations in the off–centre region of the anterior leaflet towards the insertion of

the chordae as described by Chen and May-Newman [41], however the rotations shown in the model

are rotated further towards the radial direction (Figure 5.1). The model also does not exhibit the cir-

cumferentially aligned fibres in the centre of the anterior region as shown experimentally. As this fibre

remodelling has only been performed for two iterations it is not clear if a stable solution can be found,

this is indicated by the variation in root mean squared of ∆θ which remains approximately constant

(Table 5.3).

Figure 5.9: Magnitude of∆θp in anterior belly region of the valve in the first two iteration initial and remod-
elled (1st). Only the highlighted anterior belly elements were subjected to fibre reorientation.

Table 5.3: Root mean square variation of∆θ per iteration

Iteration Root mean squared∆θ [◦]
Initial 21.3
First 22.2

Second 20.3
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Figure 5.10: Fibre angle in the remodelled areas, insertion of the strut chordae labelled as . Left – initial fibre orientation, aligned circumferentially. Middle – first iteration. Right – second
iteration.
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5.2.7 Principal stress distribution

The maximum principal stresses induced at the end of closure in the initial and remodelled fibre distri-

butions models are shown to be similar in magnitude in all three models (Table 5.4). Comparison of the

principal stress distributions shows that the location of the maximal stress occurs in the same location

in all three models, at the insertion of the strut chordae (Figure 5.11). Away from this insertion, the re-

orientation of the fibres alters the maximum principal stress distribution in the off–centre region of the

anterior leaflet as the magnitude of the stress decreases. However this is balanced by increases in the

stress magnitude observed at the annular base at the centre of the leaflet.

Figure 5.11: Comparison of stresses at closure with the initial (left) and remodelled (right) fibre orientation.
Note that values of stress greater than 0.5 MPa are visualised with the colour black. In the 2nd remodelled
case, regions of stress decrease and increase are highlighted with red and blue arrows respectively.

Table 5.4: Maximum principal stress at t=200ms.

Iteration Maximum principal stress [MPa]
Initial 1.19

1st 1.38
2nd 1.21

5.2.8 Principal stretch distribution

The maximum principal stretches induced at the end of closure in the initial and remodelled fibre distri-

butions models have been found to have negligible differences between iterations (Table 5.5). Similar to

the principal stresses, the comparison of the principal stretch distributions shows that the peak princi-

pal stretches are located in the vicinity of the strut chordal insertions (Figure 5.12). Through remodelling

of the fibre orientation the magnitude of the maximum principal stretches at the base of the anterior

leaflet are reduced (Figure 5.12). This decrease in stretch results from the rotation of the stiffer fibre di-

rection towards the direction of the greater principal stress, which increases the stiffness and therefore

reduces the deformation as shown below in Section 5.2.9. However in the two remodelled iterations the

area of greatest stretch surrounding the strut chordal insertion remains the same.
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Table 5.5: Maximum principal stretch at closure (t=200 ms).

Iteration Maximum principal stretch [–]
Initial 1.660

1st 1.659
2nd 1.633

Figure 5.12: Comparison of the maximum principal stretch in the at closure with the initial (left) and remod-
elled (right) fibre orientation. In the 2nd remodelled case, regions of stretch decrease is highlighted a blue
arrow.

5.2.9 Deformed configuration

As described in the previous section, rotation of the stiffer fibre direction towards the greater principal

stress increases the stiffness of the leaflets to the applied load that results in a decreased deformation.

Comparison of the deformation in the anteropostero plane shows that the anterior leaflet profile of the

valve exhibits reduced displacements in the atrial direction in both the remodelled scenarios (Figure

5.13).

5.2.10 Limitations

In these simulations only the basal region of the anterior leaflet, rather than the full valve, has been

subjected to the remodelling process. However as this region is the most highly loaded region, it is likely

that it will exhibit the largest and most significant fibre orientation as the approach adopted here is

stress–based. Extension of this method to the full model of the valve will be added in future iterations.

Here the leaflets of the valve have been modelled using a discrete fibre model in which the material

properties are defined relative to the fibre direction only. More advanced material models of the mitral

valve have include a continuous description of the fibres, such as the model described by Einstein et al.

[76]. Following experimental measurements of the fibre dispersion, perturbations around this value

have shown that with decreased fibre dispersion prolapsed states are generated [97]. Comparison of dis-

crete and continuous fibre models by Bischoff [75] have shown that continuous models exhibit smaller

deformations under biaxial loading. From the orientation response of the fibres it is clear that the state

of loading is highly biaxial in the anterior leaflet. Fibre splay also has a key role in dysfunctional states

such as myxomatous degeneration, in which the fibre dispersion is reported to lose all organisation [62].
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Figure 5.13: Comparison of leaflet deformation at the end of closure, nodal coordinates shown were taken in
the symmetry plane of the model.

As a key feature of the leaflet microstructure in both normal and dysfunctional states, it is intended to

include fibre dispersion in the remodelling process in future iterations of this work.

5.2.11 Summary

A full three–dimensional model of the mitral valve has been described using a transversely isotropic,

non–linear, anisotropic, hyperelastic membrane material model. Using a stress–based approach, the

fibre orientation of the basal region of the anterior region has been remodelled in response to closure.

Beginning with a uniform distribution of fibre aligned parallel to the annulus, the fibre orientation has

been remodelled based upon the ratio of the extra stresses in the first and second principal stress di-

rections. Starting from this arbitrary distribution a stress–based approach to remodelleing has been

implemented and examined by comparison to experimentally measured distributions.

The resulting changes in fibre distribution have shown certain features of the native leaflet fibre

orientation, as the fibre were found to rotate towards the insertion of the chordae tendineae. However

it was also found that in the central regions of the valve the leaflets showed significant deviation away

from circumferential alignment observed in the native leaflet tissue. Examination of the magnitude of

the maximum principal stress show no significant change, however some localised regions of the leaflets

exhibited reduced principal stresses and stretches. Comparison of the deformed configuration in the

anteropostero plane of the valve show significant variation in the protrusion of the leaflet into the left

atrium.

5.3 Valve growth

As described previously, in dysfunctional states such as functional mitral regurgitation it has been ex-

perimentally noted that the area of the mitral valve is greater when compared to normal valves [128].

Further examination of functional mitral regurgitation in an ovine animal model have been subjected

to papillary muscle by retraction, have also shown significant growth of the valve with increasing leaflet

lengths and areas [132]. Traditionally it has been considered that the properties of the valve are un-

altered in cases of functional mitral regurgitation. However these results indicate that the abnormal
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mechanical environment induce a growth response in the microstructure of the valve.

In order to better understand this process, a stress–based growth model of valve adaptation in re-

sponse to a simulated left ventricular ischemic event has been implemented in a numerical model of

the mitral valve. Here this adaptation process has been assumed to respond to mechanical stimulii

through growth whilst maintaining the initial material properties. Based upon in vivo measurements,

a state of ischemic mitral regurgitation has been simulated through the retraction of the papillary mus-

cle tips of the model. The resulting increases in maximum principal stresses in this dysfunctional state

have been used to define the growth which is proportional to stress increment. The resulting effect of

this thickness increase has then been examined in terms of the new stretches and stresses in the valve

tissue.

5.3.1 Valve geometry

Using the same geometry as detailed above in Section 5.2.1, here the valve has been truncated to the

anterior leaflet only (Figure 5.14). These changes have been performed in order to reduce numerical

instabilities in the model arising from issues such as mesh–to–mesh contact. Although only the central

portion of the anterior leaflet has been simulated, other aspects such as the primary/secondary chordae

tendineae and the papillary muscle tip remain. As before, the chordae are connected to the papillary

muscles which have been initially defined as two static nodes positioned in a plane 20 mm above the

annulus. The lateral distance between the two tips has been defined in the range 19.5 mm to 21 mm,

a value scaled relative to the annular diameter from experimentally reported measurements [110]. The

anteropostero position of the these tips was modified to achieve physiological coaptation under closure

conditions.

The valve model has been discretised into 1160 co–rotational Hughes–Liu shell elements which have

initially been defined with a uniform thickness of 1 mm. The marginal and basal/strut chordae have

been discretised into a total of 92 discrete cable elements, defined a cross–sectional area of 0.45 and 1.15

mm2 respectively. In order to simplify the numerical complexity of the problem only half the valve has

been simulated, with the valve modelled as symmetrical about the anteropostero axis. The truncated

edge of the model has been simply constrained by only permitting translations in the yz–plane (Figure

5.14).

Figure 5.14: Geometry of the growth model with the anterior leaflet highlighted in red with the unmodelled
geometry represented in grey. The dashed line in the middle figure shows the line along which the model was
constrained in the x–direction. Left – top down view. Middle – front view. Right – three dimensional view.

5.3.2 Material model

Here the material models used to represent the leaflets and the chordae are the same as described previ-

ously in Section 5.2.2. In this model the embedded fibres have been uniformly aligned in the circumfer-
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ential direction and as only the anterior leaflet is modelled, only the anterior material model parameters

are required (Table 5.6).

Table 5.6: Strain–energy function coefficients of Equation 5.1. Values from May-Newman and Yin [73].

Leaflet c0 [kPa] c1 c2

Anterior 0.399 4.535 1446.5

5.3.3 Valve closure

Simulation of valve closure has been performed in a structural–only simulation. The transvalvular pres-

sure difference used to define systole is the same as described previously in Section 5.2.4. The damp-

ening effect of the fluid has been approximated with a mass–weighted nodal velocity damping method

with the damping constant Ds = 0.01 (see Equations 2.20 and 2.21 in Section 2.4.1.2 on Page 77).

5.3.4 Ischemic mitral regurgitation

Here a state of ischemic mitral regurgitation has been simulated by displacing the papillary muscles

during closure. As described previously in Chapter 1, Section 1.3.5, in normal states the papillary muscle

contracts in order to maintain a constant distance to the annular plane. However in states of ischemic

regurgitation the contractility of the ventricle is impaired, accordingly in vivo measuremesnts of the

distance between the annular plane and the papillary muscle tips have been shown to increase during

systole (Table 5.7) [46] . From this data it can be calculated that the average papillary muscle to annulus

distance increases by 9.68% and 16.91% in the anterior and posterior papillary muscle tips respectively.

Here the average value of 13.29% has been used to define the displacement of the papillary muscle

tips during systole. Accordingly, the papillary muscle tips are displaced in the normal direction of the

annular plane, away from the atrium and towards the ventricular apex, during the simulation of closure

by a distance of 2.65 mm. Initially in the same position as the normal valve model, this displacement

has been defined using a linear ramp over the 200 ms of closure (Figure 5.15).

Table 5.7: Distance from anterior and posterior papillary muscles to annulus center in normal and ischemic
mitral regurgitation (IMR) cases. Values from Vergnat et al. [46].

Papillary muscle Normal [mm] IMR [mm]
Anterior 27.9±0.9 30.6±1.3
Posterior 27.8±1.2 32.5±1.4

5.3.5 Growth algorithm

Closure of the valve has been performed in the normal and dysfunctional states with uniform thick-

ness. Using the difference between the two stress states, the dysfunctional model has been simulated

to undergo a growth response. The growth response of the leaflet tissue in the dysfunctional state is

assumed to respond by increasing the leaflet thickness in response increases in the maximum principal

stress. The increase in thickness∆t is defined by the ratio of the difference in stresses between the dys-

functional and normal state, σd and σn respectively, relative to the original stress state σn . It has been

assumed that only increases in the maximum principal stresses increase the thickness of the leaflets,

decreases in the stresses do not change the thickness (Equation 5.10). Following this growth phase clo-

sure is performed in the growth modified valve model (now with non–uniform thickness) subject to the

same dysfunctional papillary muscle displacements. The resulting stresses are then used to update the

valve thickness in an iterative manner (Figure 5.16).
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Figure 5.15: Valve configuration in the normal (green) and dysfunctional (red) states at closure. Here the blue
arrows indicates the displacement the papillary muscles tips during systole in the dysfunctional case. It can
be seen that the resulting leaflet configuration in the dysfunctional case is displaced further away from the
atrium. For clarity, the chordae tendineae of the valve in the dysfunctional case have not been visualised.

∆t

t
=







(σd −σn )/σn ifσd −σn > 0

1 ifσd −σn ≤ 0
(5.10)

Initial leaflet thickness

Simulate valve closure

Calculate thickness increase (∆t /t )

Adjust leaflet thickness

Figure 5.16: Stress based growth algorithm.

5.3.6 Growth response

Here only the the growth response in the dysfunctional state is examined, the stress distributions from

which the remodelling response are calculated from are presented below in Section 5.3.7. Using the

stresses at closure in the normal and dysfunctional uniform thickness models, the growth response has

been calculated for a single iteration. Applying the growth algorithm illustrated in Figure 5.16 the leaflet

thickness has been updated using Equation 5.10, with the resulting variation presented in Figure 5.17.

Non–uniformly distributed, the effect of the growth response exhibits greater thickness increases in the

basal region and the free margin of the valve. Regions toward the central free margin show the small-

est (if any) increase in thickness. From the growth response, the mass of the leaflet has increased by
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∼13% (Table 5.8). Using the non–uniform thickness distribution, closure has been re–simulated and the

stresses compared between the the normal and dysfunctional states.

Table 5.8: Mass of the anterior leaflet in the normal and growth modified leaflet models.

Iteration Mass [g]
Initial 0.169946

Growth 0.19126

Figure 5.17: Variation in thickness following growth phase, here visualised in the valve in its initial unde-
formed configuration. Note that values greater than 2 mm are visualised in black.

5.3.7 Stress distribution

Here the resulting maximum principal stress distributions in the normal, dysfunctional uniform thick-

ness and the dysfunctional non–uniform thickness models have been compared (Figure 5.18). In the

normal model, peak stresses occur at the insertions of the strut chordae, similar to the full valve model

described previously in Section 5.2.7. This uniform thickness model is then subjected to a simulated

dysfunction in which the papillary muscle node is retracted during closure, which results in an increase

of 13.2% in the maximal value of the maximum principal stress (Table 5.9). In the dysfunctional state

(uniform thickness) peak stresses still occur at the insertion of the strut chordae, however regions of

similar magnitude to the peak stress appear at the edge of the leaflets and towards the basal regions.

The central region of the leaflet also show appreciable greater magnitude stresses than in the normal

case.

Following the growth response described in Section 5.3.5 the thickness of the leaflet are updated and

closure is re–simulated. This non–uniform thickness model exhibits a maximal value of the maximum

principal stress that is comparable to the normal case (Table 5.9). It can be seen from the comparison of

the stress distributions in the normal and the non–uniform thickness growth modified model, that the

stress distribution are almost identical. The induced stress increases from simulated dysfunction have

all been reduced and returned to the normal values.
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Figure 5.18: Comparison of the stresses in the normal and dysfunctional states. Left – normal model. Middle – uniform thickness model subject to papillary muscle displacement. Right –
growth adapted, non–uniform thickness model subject to papillary muscle displacement. Note that the normal and the growth adapted stress distributions are almost identical.

Figure 5.19: Comparison of the stretches in the normal and dysfunctional states. Left – normal model. Middle – uniform thickness model subject to papillary muscle displacement. Right –
growth adapted, non–uniform thickness model subject to papillary muscle displacement. Note that all three stretch distributions are almost identical.
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Table 5.9: Comparison of the maximum principal stresses in the normal and dysfunctional models

Model Thickness Max. principal stress [MPa]
Normal Uniform 1.06

Dysfunctional Uniform 1.20
Dysfunctional Non–uniform 1.03

5.3.8 Stretch distribution

In this section the maximum principal stretches in the normal, dysfunctional uniform thickness and

the dysfunctional non–uniform thickness models have been compared. Comparison of the maximal

value of the maximum principal stretches between all three models show no significant difference (Table

5.10). Similar comparison of the maximal value of the fibre stretch also show no appreciable difference

(Table 5.11). Examination of the principal stretch distributions show near identical distributions in all

three models (Figure 5.19).

Table 5.10: Comparison of the maximum principal stretch λp s in the normal and dysfunctional models.

Model Thickness Max. principal stretch [–]
Normal Uniform 1.64

Dysfunctional Uniform 1.64
Dysfunctional Non–uniform 1.63

Table 5.11: Comparison of the maximum fibre stretch λ f in the normal and dysfunctional models.

Model Thickness Max. fibre stretch [–]
Normal Uniform 1.21

Dysfunctional Uniform 1.21
Dysfunctional Non–uniform 1.21

5.3.9 Closed configuration

The deformation configuration of the valve at the end of closure in the anteropostero plane of the model

has been compared in the three different models (Figure 5.20). Retraction of the papillary muscles in the

dysfunctional states reduces the displacement of the leaflet into the atrium, as reported in the dysfunc-

tional states [132]. It can be seen that the effect of the thickness growth in the valve has no appreciable

difference in the deformed configuration of the model in the anteropostero plane of the valve.

5.3.10 Limitations

Here only the central anterior leaflet portion has been simulated. This region consists of only 39.0% of

the full valve model presented in Section 5.2 (Table 5.12). As only the anterior leaflet of the model is

represented here, the deformed state of the valve is greater than in the full model, as the posterior leaflet

limits the distance which the anterior leaflet can traverse across the mitral orifice (Figure 5.21). However

the largest growth response was exhibited in the basal regions of the anterior leaflet, regions which are

not typically in contact with the posterior leaflet and show similar comparison to the deformed state of

the full model (Figure 5.17).

Simulation of ischemic mitral regurgitation has been performed by displacing the papillary muscles

away from the annular plane over the course of closure. Here this motion has been assumed to act lin-

early over the time course of closure, in future iterations of this model this motion will be synchronised

with the dynamics of closure.

In this model growth has been assumed to be in the thickness direction only, full volumetric growth

in all three dimensions has not been modelled. The experimental measurements of Dal-Bianco et al.
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Figure 5.20: Comparison of the closed configuration in the normal and dysfunctional states at the end of
closure.

[132] indicate that the growth response of the valve increases both the leaflet length, leaflet area and

leaflet thickness (Table 5.13). Alternative approaches of modelling growth have been proposed and im-

plemented by other authors for ventricles [135] and arteries [136]. Based upon the same finite strain

theory used here, these studies have included full volumetric growth effects. It is planned to add similar

features to future iterations of this work.

In this model the leaflets are represented by constant stress elements, in which the calculated stress

is uniform over each shell. In these simulation a strong stress concentration was noted at the insertion

of the chordae (Figure 5.18), upon inspection this was found to be localised within a single element. In

order to assess the exact spatial extent of this stress concentration, further simulations with increased

mesh resolutions are required.
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Figure 5.21: Comparison of the closed configuration in the anteropostero plane of the valve in the growth
and the full model (full model data from Figure 5.13, Section 5.2.9). In both models the fibres orientation has
been defined as parallel to the annulus.

142



5.4. Context Chapter 5. Valve Remodelling and Growth

Table 5.12: Full and partial model area comparisons.

Model Area [mm2]
Growth model 339.9

Full model (Anterior) 411.8
Full model (Total) 871.2

Table 5.13: Variation in leaflet lengths and areas as reported by Dal-Bianco et al. [132]. Labels: AL – anterior
leaflet length, PL – posterior leaflet length and LA – leaflet area.

Parameter Normal value Dysfunctional value Difference [±%]
AL [mm] 17.4±1.3 19.4±1.5 +11.5
PL [mm] 14.6±1.9 15.9±1.7 +8.9
LA [cm2] 14.3±1.9 16.7±1.9 +16.8

5.3.11 Summary

Here a simplified model of the mitral valve has been subjected to a simulated case of ischemic mitral

regurgitation by retraction of the papillary muscle tip during systolic closure. In a uniform thickness

model of the valve, the increases in the maximum principal stresses have been calculated and used as

the motivation behind thickness based growth. This non–uniform thickness growth modified model

has been subjected to the same papillary muscle retraction and the stress and stretch states compared

to both the normal and dysfunctional states. Results show that the stresses are reduced to the same

magnitude as the normal constant thickness state.

5.4 Context

The work in this chapter has addressed the remodelling and growth of the mitral valve using a fibre

aligned hyperelastic material model. The work presented here is a first step to defining a mechanically

based model of tissue remodelling and growth in the context of the mitral valve. Adopted from previous

efforts reported in aortic valves it is expected that the approaches used here will require some modifi-

cation as loading conditions are significantly different between the aortic and mitral valves. Applied to

a model of the native mitral valve in normal and dysfunctional states, the approach reported here could

also be extended to the design of tissue engineered valves.

143



Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Simulation of Valvular Dynamics

In Chapter 3 the methodology used in this work and in the previously published finite element mod-

els of the mitral valve/heart valves have been examined. Quasi–static simulations of valve closure, in

which the valve reaches a closed configuration where it is in equilibrium with the applied forces, have

been performed using both structural–only and fluid–structure interaction approaches. Results show

that although there are differences between structural and fluid–structure interaction simuations due

to the constant pressure assumption used in the structural approach, the maximum magnitude of the

principal stresses and the closure dynamics are similar in both cases. Thus for quasi–static events such

as closure, simpler and faster structural–only simulations are appropiate.

However in dynamic/transient events such as valve opening following closure, where the valve is

no longer in a state of equilibrium, it has been shown that structural–only approaches are inadequate.

Significant differences between the two in terms of the in valvular dynamics have been noted, such

as the location of the maximumal velocity which in the structural–only simulations is located at the

tip, whereas in a similar fluid–structure interaction simulation it is located in the belly region of the

anterior leaflet. Thus for transient events such as valve opening and closing, complex and slower fluid–

structure interaction simulations are appropiate. The effect of fluid geometry upon valvular dynamics

has also been investigated, comparing tubular and U–shaped fluid volumes. Results indicate significant

differences due to the faster fluid flow generated in the straighter and less physiological tubular volume

when compared to the U–shaped volume.

6.1.2 Valvular Repair Techniques

In Chapter 4 a fluid–structure interaction method has been used to simulate the effect of a surgical re-

pair technique known as the edge–to–edge repair. Applied to valves which are no longer able to prevent

retrograde flow during closure, the repair restores function in closure by reducing the interleaflet dis-

tance by connecting surgically connecting the prolapsing segment of the leaflets. Although function in

closure is restored, valvular function in opening is modified as the shape of the valvular orifice is re-

duced. Affecting the flow rate through the valve, this repair also increases the induced stress in the valve

due to the increased haemodynamic loads. In this work the effect of this procedure has been simulated

in a dysfunctional model of the mitral valve using a fluid–structure interaction model. Using this model

both an invasive and non–invasive approach to the edge–to–edge have been examined, with the result-

ing valvular and fluid dynamics compared to a normal valve. The results of these simulations indicate

that the maximum magnitude of the principal stresses are approximately doubled when compared to
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the normal valve, conversely the corresponding flow rate through the valvular orifice was found to be

reduced by approximately half. Significant differences were observed between the non–invasive and

invasive procedures, with the more invasive procedure resulting in a more diffuse stress distribution

when compared to the localised stress concentration in the non–invasive case. Clinical studies indicate

that the long–term survival of the invasive procedure is greater, here the simulated results suggested a

possible stress related mechanism.

6.1.3 Valve Remodelling and Growth

In Chapter 5 the role of biomechanical forces in the growth and remodelling of the mitral valve have

been examined in both normal and diseased states. Using a hyperelastic, non–linear, anisotropic, fibre

aligned material model, the remodelling of fibre distribution in the anterior leaflet in response to the

induced stresses during closure have been simulated. Starting with an initial distribution of uniformly

distributed fibres, it has been examined if a stress based approach to fibre remodelling will result in a

functional configuration which compares well to experimentally measured results. The results indicate

that the remodelled fibre distributions include some aspects of experimentally reported fibre distribu-

tions, such as alignment at the insertion of the strut chordae. However the simulated fibre distributions

lack alignment in other regions, exhibiting unphysiological fibre configurations. Performed a function

of the discrete fibre direction only, these results suggest that in order to generate functional and physio-

logical fibre distributions further inputs such as the fibre splay are required.

Following this, in a simplified model of the mitral valve, the growth response of the mitral valve in re-

sponse to a simulated case of ischemic mitral regurgitation has been performed. In this model ischemic

mitral regurgitation has been simulated by retracted the papillary muscles during closure, the resulting

growth response of the leaflet thickness to the abnormal biomechanical loads have been defined as a

function of the both the principal stresses in normal and dysfunctional states. After updating the thick-

ness, the growth modified model was closed again under the same dysfunctional conditions and the

resulting stresses re–evaluated. The results indicate that in the growth modified model the distribution

of the maximum principal stresses show little or no significant difference to the normal case, suggesting

a possible mechanism for stress reduction in dysfunctional states such as ischemic mitral regurgitation.

6.1.4 Limitations

The main limitation of this model (and all finite element models) is the inability to measure and there-

fore validate the predicted stress states in vivo. Currently the most appropriate method of validation

are either in vivo comparison of leaflet deformation (for example see Prot et al. [92]) or in vivo strain–

based measurements such as those reported by Sacks et al. [137]. Although the simulated stress states

presented are an approximation of the in vivo conditions, comparisons between different iterations of

each model allows for a qualitative understanding of how the stress distributions vary in the different

scenarios modelled.

6.2 Future Work

6.2.1 Fluid volume geometry

Limited by the structured mesh required by the fluid solver, in this work the geometry of the ventricle

has been represented as a rigid volume that is formed of cuboid elements. A gross simplification of the

dynamic geometry of the ventricle, the geometric form of the ventricle is a key feature in the function of

the mitral valve and the heart (see Chapter 1, Section 1.3.1).

Using an alternative approach, it will be possible to represent the ventricle as another immersed

structure within a common fluid volume. With this approach it will be possible to generate more physi-
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ological shaped geometries and allow the definition of the dynamic motion of the ventricular wall during

filling. Using such a model of the ventricle and the mitral valve, it is planned to address issues such as

valvular and filling dynamics in mitral valve stenosis and ventricular dilation.

6.2.2 Dysfunctional material properties

The application of the edge–to–edge repair is typically performed in cases of mitral valve prolapse/re-

gurgitation whereby the tissue no longer has its native biomechanical properties (see Chapter 1, Section

1.4). Previous experimental results indicate that both the leaflet and chordal tissue exhibit a weaker

biomechanical tensile strength, with the leaflet tissue also showing a less anisotropic response [62, 69].

Although previous of the edge–to–edge repair have attempted to model this state of tissue dysfunc-

tion, simplifications have been made in the material model used to represent the biomechanical prop-

erties. Also implemented using a structural–only approach, the induced stresses will have been under-

estimated (see Chapter 4, Section 4.2). By fitting the stress response of the the anisotropic fibre aligned

material model described in this work (see Chapter 2, Section 2.3.1.3), it is planned to address the ef-

fect of the edge–to–edge repair in a degenerate case of mitral regurgitation using a the fluid–structure

interaction.

6.2.3 Valve tissue remodelling

The remodelling and growth of the tissue microstructure has been modelled using a discrete fibre model

and stress–based approach of tissue adaptation. As described previously, an extension of this will be

implement a continuous based description of the fibre distribution that will also include the fibre splay

as a parameter of investigation.

In this work the adaptation has assumed to be a stress driven process, i.e. force based. However

there exists some debate on if cells interpret stresses or strains. In order to assess this a principal strain

approach to remodelled of the tissue is planned. By following the directions of maximal deformation,

the variation in the stress and strain distribution will be assessed.

Uniquely for valves, significant contact forces are imparted on the contact surfaces of the valves

during each cardiac cycle. In dysfunctional states such as ischemic mitral regurgitation, tenting of the

leaflets can reduce the contact area and thus the contact force. The role of this contact force in regulation

of the tissue microstructure has yet to be addressed and is planned to be implemented in future work.

6.2.4 Patient Specific Models

In this work all the model presented have been described using idealised geometries, in reality the mi-

tral valve has a significant degree of asymmetry (Chapter 1). In order to be of use in medical scenar-

ios it is required to build patient specific models which incorporate the relevant patient detail. It has

been shown from numerical simulations asymmetric geometrical features do affect the stress state of

the valve, resulting in an asymmetric distribution [90]. Using imaging modalities such as magnetic res-

onance imaging (MRI) and three dimensional echocardiography, patient specific features such as the

annular position & dynamic motion, papillary muscle position & motion and the leaflet length & thick-

ness can obtained and input into the model. From the resulting simulations it will also be possible to

validated the model and modelling methodology by direct comparison to clinical measurements of the

valve deformation and/or fluid velocities.
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Appendix A

Anatomical Data

A.1 Annulus

Table A.1: Annular dimensions, all units in mm. Labels: I – intact, E – excised, H – human, P – porcine, TL
– total annular length, AL – total anterior annular length, PL – total posterior annular length, PLA – poste-
rior leaflet anterior cusp annular length, PLC – posterior leaflet central cusp annular length, PLP – posterior
leaflet posterior cusp annular length, CA – anterior commissural cusp annular length and CP – posterior
commissural cusp annular length.

Reference [15] (H) [11] (H) [11] (P) [19] (H) [138] (H)
TL (I) – 82±7 79±7 – –
TL (E) 80–120 99±8 106±7 93.2±11 116±3.5
AL (I) – 30±5 31±3 – –
AL (E) 24–45 32±4 32±4 32±4 32±1.3
PL (I) – 52±6 50±5 – –
PL (E) 23–41 67±8 74±7 – –

PLA (E) – – – 14.1±3.6 –
PLC (E) – – – 19.3±4.1 –
PLP (E) – – – 13.6±3.3 –
CA (E) – – – 7.7±2.1 12±3.3
CP (E) – – – 7.2±2.1 17±0.8

A.2 Leaflets

Table A.2: Leaflet dimensions, all units in mm. Labels: E – excised, H – human, P – porcine, AFM – anterior
leaflet free margin length, PFM – posterior leaflet free margin length, ALH – anterior leaflet height, PLM –
posterior leaflet height, PLAH – posterior leaflet anterior cusp height, PLCH – posterior leaflet central cusp
height, and PLPH – posterior leaflet posterior cusp height.

Reference [15] (H) [11] (H) [11] (P) [19] (H) [138] (H)
AFM (E) – 45±6 46±4 – –
PFM (E) – 75±12 94±3 – –
ALH (E) 18–32 20±2 20±4 23.4±2.9 23±0.9
PLH (E) 8–25 12±1 12±2 – –

PLAH (E) – – – 11.2±2.3 9±1
PLCH (E) – – – 13.8±2.9 14±0.9
PLPH (E) – – – 11±2.3 10±1.2
CAH (E) – 7±1 7±1 8.7±2.4 8±1
CPH (E) – 7±1 7±1 8.3±2 8
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A.3 Chordae tendineae

Table A.3: Measurements of chordae lengths, all units in mm. Labels: H – human, P – porcine, ALM – anterior
leaflet marginal chordae, ALB – anterior leaflet basal chordae, PLM – posterior leaflet marginal chordae, PLB –
posterior leaflet basal chordae, APM – anterolateral papillary muscle, PPM – posteromedial papillary muscle,
ALMC – anterior leaflet main chordae, ALPC – anterior leaflet paramedial chordae, ALCC – anterior leaflet
paracommissural chordae, PLCT – posterior leaflet cleft chordae, CAC – anterior commissural cusp chordae
and CPC – posterior commissural cusp chordae.

Reference [11] (H) [11] (P) [19] (H) [138] (H)
ALM (APM) 13±2 mm 14±1 – –
ALB (APM) 17±3 mm 18±2 – –
PLM (APM) 12±2 mm 12±2 – –
PLB (APM) 16±2 mm 16±2 – –
ALM (PPM) 13±2 mm 15±3 – –
ALB (PPM) 18±3 mm 20±3 – –
PLM (PPM) 12±2 mm 12±2 – –
PLB (PPM) 16±2 mm 16±2 – –

ALMC (APM) – – 17.2±3.9 19±0.4
ALPC (APM) – – 16.2±3.7 15±0.5
ALCC (APM) – – 15.5±3.0 17±0.3
ALMC (PPM) – – 17.9±4.3 17±0.2
ALPC (PPM) – – 16.8±3.4 –
ALCC (PPM) – – 17.5±4.0 –
PLCT (APM) – – 14.5±3.2 13±3.7
PLCT (PPM) – – 14.9±3.2 13±3.7

CAC – – 12.3±3.6 13±0.2
CPC – – 13.8±3.9 15±0.05

A.4 Papillary muscle

Figure A.1: Measurement of mean papillary muscle distance from the mitral annulus. Image after Sakai et al.
[19].
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Appendix B

Numerical Methods

LS–DYNA is a numerical code which provides a continuum approximation of the non–linear dynamic

of structures (or fluids) using the finite element method. Here the technical details of the numerical ap-

proach adopted in LS–DYNA are reviewed. The information presented in this chapter has been obtained

directly from the theory and user manuals [79, 80].

B.1 Structural dynamics

Defined in a moving Lagrangian frame of reference, the dynamics of the structure are solved by approx-

imating the solution to the conservation of mass and momentum equations using the finite element

method as detailed in the following sections.

B.1.1 Problem definition

Consider a body within a fixed Cartesian coordinate system in which a point is initially located at Xα

(where α=1, 2, 3) and subsequently moves to the point x i (where i=1, 2, 3) in the same coordinate

system (Figure B.1). Using a Lagrangian formulation the deformation of this point can be described in

terms of the initial coordinates Xα (Equation B.1). At the time t=0 the this point is located at Xα with

velocity Vi (Equations B.2 and B.3). Here the notation ẋ is the first time derivative of the point coordinate,

i.e. the velocity vi = ẋ = d x/d t .

x i = x i (Xα, t ) (B.1)

x i (Xα, 0) =Xα (B.2)

ẋ i (Xα, 0) =V i (Xα) (B.3)

B.1.2 Governing Equations

The Lagrangian dynamics of the solid are governed by the conservation of momentum (Equation B.4)

which satisfies the traction boundary condition on the boundary ∂ b1 (Equation B.5), the displacement

boundary condition on the boundary ∂ b2 (Equation B.6) and the contact discontinuity along the interior

boundary ∂ b3 where x+i = x−i (Equation B.7). Here the notation ẍ is the second time derivative of the

point coordinate, i.e. the acceleration a i = ẍ = d 2x/d t 2. The comma used in the index notation denotes

covariant spatial differentiation, i.e. σi j , j = ∂ σi j /∂ x j . Conservation of mass is trivially satisfied in the

Lagrangian form (Equation B.8). Here σi j is the Cauchy stress tensor, ρ is the current density, ρ0 is the
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B0

b

∂Bi

∂bi

n

x1 X1

x2 X2
x3 X3

t = 0

t

Figure B.1: Problem definition.

initial/reference density, n i is the unit outward normal to boundary element ∂ b i , f i is the body force

density and V is the current volume ratio defined relative to the initial volume V0.

σi j , j +ρ f i =ρẍ i (B.4)

σi j n i = t i (t ) (B.5)

x i (Xα, t ) =Di (t ) (B.6)
�

σ+i j −σ
−
i j

�

n i = 0 (B.7)

ρV =ρ0 (B.8)

Conservation of energy is can be defined as follows (Equation B.9), here the terms s i j , p and q are

the deviatoric stresses, pressure and bulk viscosity respectfully (Equations B.10 and B.11). Here δi j is

the Kronecker delta, i.e. δi j = 1 if i = j else δi j = 0.

Ė =V s i j ε̇i j −
�

p +q
�

V̇ (B.9)

s i j =σi j +
�

p +q
�

δi j (B.10)

p =−
1

3
σi jδi j −q =−

1

3
σk k −q (B.11)

B.1.3 Weak formulation

The weak formulation of the problem is defined by integrating the conservation of momentum over the

current geometry (Equation B.12). Here δx i satisfies all the boundary conditions upon ∂ b2
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∫

v

�

ρẍ i −σi j , j −ρ f i

�

δx i d v +

∫

∂ b1

�

σi j n j − t i

�

δx i d s +

∫

∂ b3

�

σ+i j −σ
−
i j

�

n jδx i d s = 0 (B.12)

This equation is simplified by first applying the divergence theorem to the volume integral shown in

Equation B.13. Following this the product rule is then applied to the same terms (Equation B.14).

∫

v

�

σi jδx i

�

, j
d v =

∫

∂ b 1

σi j n jδx i d s +

∫

∂ b3

�

σ+i j −σ
−
i j

�

n jδx i d s (B.13)

�

σi jδx i

�

, j
=σi j , jδx i +σi jδx i , j (B.14)

Combining Equations B.13 and B.14 gives Equation B.15, which is then substituted into Equation

B.12 to give the weak formulation of the momentum equation (Equation B.16).

∫

v

σi jδx i , j d v =

∫

v

−σi j , jδx i d v +

∫

∂ b 1

σi j +n jδx i d s +

∫

∂ b 3

�

σ+i j −σ
−
i j

�

n jδx i d s (B.15)

δπ=

∫

v

ρẍ iδx i d v +

∫

v

σi jδx i , j d v −
∫

v

ρ f iδx i d v −+
∫

∂ b 1

t iδx i d s = 0 (B.16)

B.1.4 Finite element method

Here the solid is represented by a mesh of k interconnected nodes, in which the coordinates of the points

x i are described as a function of the shape functions φj , parametric coordinates (ξ,η,ζ) and the nodal

coordinates of the j –th node in the i –th direction x j
i (Equation B.17). Summing over the n elements, δπ

can be approximated (Equation B.18).

x i (Xα, t ) = x i
�

Xα
�

ξ,η,ζ
�

, t
�

=
k
∑

j=1

φj
�

ξ,η,ζ
�

x j
i (t ) (B.17)

δπ=
n
∑

m=1

δπm = 0 (B.18)

The weak formulation can then be written as shown in Equation B.19, in which theφm
i are the shape

functions for the associated k nodes of the element (Equation B.20). Note that here the integrals are

performed over the individual volumes of the elements, vm .

n
∑

m=1

(

∫

vm

ρẍ iφ
m
i d v +

∫

vm

σm
i jφ

m
i , j d v −

∫

vm

ρ f iφ
m

i d v −
∫

∂ b 1

t iφ
m
i d s

)

= 0 (B.19)

φm
i =

�

φ1,φ2, . . . ,φk
�m

i (B.20)

In matrix form the weak formulation is given as shown in Equation B.21, where N is the interpolation

matrix, σ the stress vector σT = (σx x ,σy y ,σz z ,σx y ,σy z ,σz x ), B the strain–displacement matrix and a

the nodal acceleration vector. Given that the body forces, internal stresses, etc. are all known varibles,

the only remaining unknown is the acceleration.
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n
∑

m=1

(

∫

vm

ρN TN a d v +

∫

vm

B Tσd v −
∫

vm

ρN Tb d v −
∫

∂ b 1

N Tt d s

)m

= 0 (B.21)

B.2 Time integration

Using the acceleration a defined above from the weak formulation of the momentum equation, the mo-

tion of the dynamics of the solid body are defined by integrating the accelerations and resulting veloc-

ities. In LS–DYNA time integration is performed using an explicit method, which staggers the velocity

with respect to the displacement in time. Using central finite difference, this staggered velocity/dis-

placement scheme ensures second order accuracy in time.

Using the nodal displacement at the current time step t = n+1 and the velocities at an intermediate

time step t = n + 1/2, the nodal displacement at the next time step is determined (Equation B.22). The

velocity at this intermediate time step is determined by equating the acceleration t = n to the velocities

at times t = n −1/2 and t = n +1/2 using the central finite difference scheme (Equation B.23 ), with the

acceleration at time t = n determined from the nodal forces and masses (Equation B.24).

d n+1 = d n +v n+1/2∆t (B.22)

v n+1/2 = v n−1/2+a n∆t (B.23)

v n+1/2 = v n−1/2+
F n

M
∆t (B.24)

The force at time t = n can be divided into external (body forces, contact forces, etc.) and internal

forces (Equation B.25). The internal forces is calculated from the transpose of the strain displacement

matrix B T multiplied with the stress σ (Equation B.26). This stress σ is determined from the selected

material model (linear, non–linear, solid, fluid, etc.)

F n = F n
i nt + F n

e x t (B.25)

F n
i nt =

∫

V

B tσn d v (B.26)

B.3 Fluid dynamics

Defined in a moving Lagrangian frame of reference, the dynamics of the fluid are solved by approxi-

mating the solution to the conservation of mass and momentum equations using the finite element

method as detailed previously. Following this, the fluid variables are advected to a fixed Eulerian frame

of reference as detailed in Section B.3.5.

B.3.1 Governing equations

Defined a Lagrangian frame of reference, the governing equations of motion for the fluid are the same as

described previously in Section B.1.2. However in a fluid the stresses are generated in response to strain

rates and not strains as detailed below in Section B.3.4.

B.3.2 Weak formulation

As the governing equations are the same as the structural case, the weak formulation follows the ap-

proach detailed in Section B.1.3 above.
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B.3.3 Finite element method

As the weak formulation is the same as the structural case, the finite element implementation follows

the approach detailed in Section B.1.4 above.

B.3.4 Material model

Unlike solids, in fluids the stresses induced in the Lagrangian frame of reference are generated in re-

sponse to strain rates rather than strains. In LS–DYNA the fluid material model MAT_NULL must be

used, in this model the the deviatoric stresses σ′ are proportional to the shear strain rate ε̇′ rather than

the shear strain. For Newtonian fluids the coefficient of proportionality is the dynamic viscosity of the

fluid µ (Equation B.27). The internal pressure is defined using an equation of state, which is a function

of the volumetric deformation and the speed of sound C of the material (Equation B.28). Here δi j is the

Kronecker delta, i.e. δi j = 1 if i = j else δi j = 0.

σi j =−Pδi j +σ′ =−Pδi j +2µε̇′ (B.27)

P =ρC 2∆V

V
(B.28)

B.3.5 Hydrocode

Numerical simulations of fluid motion using a Lagrangian approach only can result in severe mesh dis-

tortion. In order to avoid numerical instabilities arising from this, approaches have been developed in

which the changes in the fluid variables of velocity and pressure following the Lagrangian motion of the

mesh (in the distorted state) are advected back to the original fixed mesh (here referred to as Eulerian).

Following this the updated Eulerian mesh is then used as in the next time step.

This particular method of fluid dynamic simulation is referred to as a “split operator” method and

this class of fluid solver is referred to as a “hydrocode”. As defined in Section 2.4.2.1, the fluid motion is

first solved in a Lagrangian sense. Following this, the transport (or flux) of velocity and pressure resulting

from the Lagrangian motion of the mesh is calculated relative to the initial fixed Eulerian configuration.

This change is then advected back to the Eulerian configuration using a monotonic advection scheme.

B.4 Contact Algorithms

Contact of the structure with the structure and fluid with the structure is handled in the same manner

in LS–DYNA. Penetration of a pre–defined structural component (referred to as the master) by either a

fluid or structural node (referred to as the slave) is penalised by applying a resistive force. Following this

the two different penalty formulations used within this work are detailed.

B.4.1 Standard penalty formulation

In the standard penalty formulation, contact is first determined if a slave node penetrates a master sur-

face. This is determined by calculation of l (see Equation B.29); n i is the normal of the master surface

s i and vectors t and r are vectors from an arbitrary origin to the slave node and master segement (see

Figure B.2). Penetration is deemed to occur when l < 0, contact is then simulated by the application of

an interface force vector to the slave node ( f s ) and to the four nodes of the master segment ( f i
m ); the

stiffness factor k i is based upon the bulk modulus K i , shell element area A i and an interface stiffness

scale factor (defaulted to 0.1). Various different options exist for calculation of this contact stiffness pa-

rameter; the default contact stiffness is based on the minimum of the master segment and slave node,
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but it is possible to base this stiffness on the master segment alone, the slave node, the slave node (area

or mass weighted) or inversely proportional to the shell thickness instead of the area.

l = n i · [t − r (ξ,η)]< 0 (B.29)

f s =−l k i n i (B.30)

f i
m =φi (ξc ,ηc ) f s (B.31)

k i =
�

f s i K i A i
�

/max[l s he l l d i a g ona l ] (B.32)

Figure B.2: Contact definition of the master segment and slave node. Image after Hallquist [79]

B.4.2 Segment Based Penalty Formulation

An alternative to the master segment/slave node method is the segment based contact penalty algo-

rithm. This algorithm utilises segmental masses rather than nodal masses in the calculation of the con-

tact stiffness kc s . Here the variables SLSFAC , SFS and SF M are the contact force scale factors. The time

step factor ∆tc is set to the initial time step size, however it is only updated if the solution time step

increases by more than 5%.

kc s (t ) = 0.5 ·SLSFAC ·m ∗ · (SFS/SFM)
�

m1m2

m1+m2

��

1

∆tc (t )

�2

(B.33)

B.5 User defined material

Custom user defined materials can be are added to LS–DYNA by amending FORTRAN subroutines pro-

vided by LSTC [80]. Note that this code is written in the FORTRAN77 format, thus lines of text must not

exceed 73 characters or they cannot be parsed by the compiler. Also note that variables beginning with

the letters I to N have implicitly been defined as the data type INTEGER. Listed below is the code re-

quired to implement the transversely isotropic, anisotropic, non–linear, hyperelastic membrane model

described by Einstein et al. [78] in Chapter 2, Section 2.3.1.3. Consisting of two subroutines, the first

subroutine URMATS assembles the local strain increments (Listing B.1) which is then followed by the

second subroutine UMAT48 which calculates and returns the local elemental stress (Listing B.2).
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Listing B.1: FORTRAN source code for urmats subroutine. This subroutine collects together the relevant pa-

rameters for the user material subroutine umat (Listing B.2). The code shown here has been modified from

the default LS–DYNA subroutine to include the memory block aux32locwhich includes the local incremen-

tal strains for the co–rotational Hughes–Liu element (ELFORM=11).

subroutine urmats ( l f t , l l t , cm, capa , mt , crv , ipt , rcoor , scoor , tcoor ,

. nnm1, nconstp )

c

c user def ined s h e l l subroutine modified by kevin lau

c acknowlegment and thanks to daniel e i n s t e i n

c

c approach d e t a i l e d in : ‘ dynamic f i n i t e element implementation

c o f nonlinear , a n i s o t r o p i c h y p e r e l a s t i c b i o l o g i c a l membranes

c by e i n s t e i n e t al . in comp . meth . in biomech . and biomed .

c eng . 2003 , vol . 6 ( 1 ) , pp.33−44 , doi :10.1080/1025584021000048983

c

include ’ nlqparm ’

# include " bk07 . inc "

# include " bk13 . inc "

include ’ bk19 . inc ’

include ’ i o u n i t s . inc ’

include ’memaia . inc ’

# include "dynmem. inc "

C_TASKCOMMON ( aux2loc )

C_TASKCOMMON ( aux8cloc )

C_TASKCOMMON ( aux14loc )

C_TASKCOMMON ( aux19loc )

C_TASKCOMMON ( aux33loc )

C_TASKCOMMON ( bk36loc )

C_TASKCOMMON ( f a i l u l o c )

C_TASKCOMMON ( f a i l c m l o c )

C_TASKCOMMON ( hourgloc )

C_TASKCOMMON ( s h l o p t l o c )

C_TASKCOMMON ( soundloc )

C_TASKCOMMON ( s u b t s s l o c )

c

common/aux2loc /e1 ( nlq ) , e2 ( nlq ) , d3 ( nlq ) , e4 ( nlq ) , e5 ( nlq ) , e6 ( nlq ) ,

1 wzzdt ( nlq ) , wyydt ( nlq ) , wxxdt ( nlq ) , einc ( nlq )

common /aux8cloc /

& d1 ( nlq ) , d2 ( nlq ) , d4 ( nlq ) , d5 ( nlq ) , d6 ( nlq ) ,

& dfg11 ( nlq ) , dfg21 ( nlq ) , dfg31 ( nlq ) , dfg12 ( nlq ) , dfg22 ( nlq ) ,

& dfg32 ( nlq ) , dfg13 ( nlq ) , dfg23 ( nlq ) , dfg33 ( nlq ) , s t g 5 ( nlq ) ,

& s t g 6 ( nlq ) , a11 ( nlq ) , a12 ( nlq ) , a21 ( nlq ) , a22 ( nlq )

common/aux14loc /

& s i g 1 ( nlq ) , s i g 2 ( nlq ) , s i g 3 ( nlq ) , s i g 4 ( nlq ) ,

& s i g 5 ( nlq ) , s i g 6 ( nlq ) , epsps ( nlq ) , hsvs ( nlq , 1 4 2 )

common/aux19loc /

1 sign0 ( nlq ) , sign1 ( nlq ) , sign2 ( nlq ) , sign3 ( nlq ) , sign4 ( nlq ) ,

2 sign5 ( nlq ) , sign6 ( nlq )

common/aux33loc /

166



B.5. User defined material Appendix B. Numerical Methods

1 i x 1 ( nlq ) , i x 2 ( nlq ) , i x 3 ( nlq ) , i x 4 ( nlq ) , i x s ( nlq , 4 ) , mxt ( nlq )

common/bk36loc / index

common/ f a i l c m l o c / i f a i l ( nlq )

common/ f a i l u l o c / s ieu ( nlq ) , f a i l ( nlq )

common/hourgloc /ym( nlq ) ,gm( nlq ) , i f s v ( nlq )

common/ s h l o p t l o c / i b e l y t

c

common/bk01/ itherm , itemp , ntmp0 , ntmp1 , itempan , itempdr , itmpe ( 4 4 )

common/bk26/nintcy

common/bk28/summss , xke , xpe , t t , xte0 , erodeke , erodeie

l o g i c a l f a i l u r

common/ fa i lcm / f a i l u r

common/numcpu/ncpu , ncpua , ncpub , lenvec ( 8 )

common/ shlopt / i s t r n , istupd , i b e l y t s , miter

common/ soundloc/ ss ( nlq ) , sndsp ( nlq ) , diagm ( nlq ) , sarea ( nlq ) ,

. dxl ( nlq )

common/ thropt / i topaz ( 1 0 1 )

common/umatss/ ibulkp ( 6 0 ) , nusrcn ( 6 0 ) , i o r i e n ( 6 0 ) , nusrmt , ishrmp ( 6 0 ) ,

. i v e c t r ( 6 0 ) , ihyper ( 6 0 )

common/ s u b t s s l o c / d t 1 s i z ( nlq )

c

dimension cm( ∗ ) , crv ( lq1 , 2 , ∗ ) , nconstp ( ∗ )

dimension eps ( 6 ) , s i g ( 6 ) , hsv ( 1 4 2 ) , temps ( nlq )

dimension thhsv ( nlq , 1 0 0 ) , t h h s v i ( 1 0 0 )

l o g i c a l f a i l e l , f a i l e l s ( nlq )

c

data temps/nlq ∗0 . 0/

c

c common statement added to a c c e s s the members o f the

c l o c a l displacement g r a d i e n t f o r ELFORM = 11 only

c

common/aux32loc /dxy ( nlq ) , dyx ( nlq ) , dyz ( nlq ) , dzy ( nlq ) ,

& dzx ( nlq ) , dxz ( nlq )

c

c common statement has been added to a c c e s s the transformation

c matrix

c

common/aux40loc /

1 aa11 ( nlq ) , aa12 ( nlq ) , bb13 ( nlq ) , aa21 ( nlq ) , aa22 ( nlq ) , bb23 ( nlq ) ,

2 aa31 ( nlq ) , aa32 ( nlq ) , bb33 ( nlq ) , s11 ( nlq ) , s12 ( nlq ) , s13 ( nlq ) ,

3 s21 ( nlq ) , s22 ( nlq ) , s23 ( nlq ) , s31 ( nlq ) , s32 ( nlq ) , s33 ( nlq )

c

c v a r i a b l e l i s t

c

c g1cr − dudx in c o r o t a t i o n a l b a s i s

c g2cr − dvdx in c o r o t a t i o n a l b a s i s

c g4cr − dudy in c o r o t a t i o n a l b a s i s

c g5cr − dvdy in c o r o t a t i o n a l b a s i s

c g1ob − dudx in o r i g i n a l b a s i s
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c g2ob − dvdx in o r i g i n a l b a s i s

c g4ob − dudy in o r i g i n a l b a s i s

c g5ob − dvdy in o r i g i n a l b a s i s

c f1ob − f11 in o r i g i n a l b a s i s

c f2ob − f21 in o r i g i n a l b a s i s

c f4ob − f12 in o r i g i n a l b a s i s

c f5ob − f22 in o r i g i n a l b a s i s

c c1ob − c11 in o r i g i n a l b a s i s

c c2ob − c21 in o r i g i n a l b a s i s

c c4ob − c12 in o r i g i n a l b a s i s

c c5ob − c22 in o r i g i n a l b a s i s

c n1 − x−component c o r o t a t i o n a l / o r i g i n a l b a s i s v e c t o r

c n2 − y−component c o r o t a t i o n a l / o r i g i n a l b a s i s v e c t o r

c

dimension ww11( nlq ) ,ww21( nlq ) ,ww12( nlq ) ,ww22( nlq )

dimension g1cr ( nlq ) , g2cr ( nlq ) , g4cr ( nlq ) , g5cr ( nlq )

dimension g1ob ( nlq ) , g2ob ( nlq ) , g4ob ( nlq ) , g5ob ( nlq )

dimension f1ob ( nlq ) , f2ob ( nlq ) , f4ob ( nlq ) , f5ob ( nlq )

dimension c1ob ( nlq ) , c2ob ( nlq ) , c4ob ( nlq ) , c5ob ( nlq )

dimension zz1 ( nlq ) , zz2 ( nlq )

c

c p r o c e s s i n g elements

c

mx=48∗(mxt ( l f t )−1)

gm( l f t )=cm(mx+abs ( ishrmp (mt ) ) )

bk=cm(mx+ibulkp (mt ) )

pr= (3.∗bk−2.∗gm( l f t ) ) / ( 2 . ∗ ( 3 . ∗ bk+gm( l f t ) ) )

ym( l f t )=2 .∗ ( 1 .+pr )∗gm( l f t )

ss ( l f t )=ym( l f t )/ (1 .−pr∗pr )

c

c determining number o f r e q u e s t e d h i s t o r y v a r i a b l e s

c

no_hsvs=nconstp ( mxt ( l f t ) )

i f ( lenvec ( 5 ) . eq . 1 ) no_hsvs=no_hsvs−6

i f ( i o r i e n (mt ) . ne . 0 ) no_hsvs=no_hsvs−2

i f ( ihyper (mt ) . ne . 0 ) no_hsvs=no_hsvs−9

c

c i n i t i a l i z i n g i n d e c e s

c

i f ( i o r i e n (mt ) . ne . 0 ) then

i f ( ihyper (mt ) . ne . 0 ) then

ind_defgrad=1+no_hsvs

ind_ortho=ind_defgrad+9

e l s e

ind_ortho=1+no_hsvs

endif

ind_q1=ind_ortho

ind_q2=ind_ortho+1

ind_ l a s t=ind_q2
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c

e l s e

i f ( ihyper (mt ) . ne . 0 ) then

ind_defgrad=1+no_hsvs

ind_ l a s t=ind_defgrad+8

e l s e

ind_ l a s t=no_hsvs

endif

endif

c

i f ( ind_ l a s t . gt . 1 4 2 ) then

write ( i o t t y , 9 0 0 ) lqfmiv ( mxt ( l f t ) )

write ( iohsp , 9 0 0 ) lqfmiv ( mxt ( l f t ) )

write ( iomsg , 9 0 0 ) lqfmiv ( mxt ( l f t ) )

c a l l adios ( 2 )

endif

c

num_nods=4

i f ( i b e l y t . eq . 0 ) then

num_nods=8

do 10 i= l f t , l l t

s ign0 ( i )= sign3 ( i )+ym( l f t )∗d3 ( i )

sign3 ( i )= sign0 ( i )

10 continue

endif

c

c r e s e t hsv v a r i a b l e s

c

i f ( t t . eq . 0 . 0 . and . nintcy . eq . 0 ) then

do i= l f t , l l t

hsvs ( i , 1 )=1 .

hsvs ( i , 2 )=0 .

hsvs ( i , 3 )=0 .

hsvs ( i , 4 )=1 .

hsvs ( i , 5 )=1 .

hsvs ( i , 6 )=0 .

hsvs ( i , 7 )=1 .

hsvs ( i , 8 )=0 .

hsvs ( i , 9 )=0 .

hsvs ( i , 1 0 )=1 .

hsvs ( i , 1 1 )=1 .

hsvs ( i , 1 2 )=0 .

hsvs ( i ,13)=hsvs ( i , ind_q1 )

hsvs ( i ,14)=hsvs ( i , ind_q2 )

hsvs ( i , 1 5 )=0 .

c

hsvs ( i , 1 6 )=0 .

hsvs ( i , 1 7 )=0 .

hsvs ( i , 1 8 )=0 .
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hsvs ( i , 1 9 )=0 .

hsvs ( i , 2 0 )=0 .

hsvs ( i , 2 1 )=0 .

c

hsvs ( i , 2 2 )=0 .

hsvs ( i , 2 3 )=0 .

c

enddo

endif

c

c

i f ( i o r i e n (mt ) . ne . 0 . and . ihyper (mt ) . ge . 0 ) then

c

c G i s provided in the c o r o t a t i o n element system

c i t must be r o t a t e d back to the o r i g i n a l b a s i s

c in order to assemble F

c

do i= l f t , l l t

c

g1cr ( i )=e1 ( i )

g2cr ( i )=dyx ( i )

g4cr ( i )=dxy ( i )

g5cr ( i )=e2 ( i )

c

c s h e l l thinning

c

d3 ( i )= ( 1 . / ( ( g1cr ( i )+1 . ) ∗ ( g5cr ( i )+1.)− g2cr ( i )∗ g4cr ( i ) ) ) −1 .

c

zz1 ( i )=hsvs ( i , 5 )

zz2 ( i )=hsvs ( i , 6 )

c

ww11( i )=zz1 ( i )∗ g1cr ( i )−zz2 ( i )∗ g4cr ( i )

ww12( i )=zz2 ( i )∗ g1cr ( i )+zz1 ( i )∗ g4cr ( i )

ww21( i )=zz1 ( i )∗ g2cr ( i )−zz2 ( i )∗ g5cr ( i )

ww22( i )=zz2 ( i )∗ g2cr ( i )+zz1 ( i )∗ g5cr ( i )

c

g1ob ( i )=zz1 ( i )∗ww11( i )−zz2 ( i )∗ww21( i )

g2ob ( i )=zz2 ( i )∗ww11( i )+zz1 ( i )∗ww21( i )

g4ob ( i )=zz1 ( i )∗ww12( i )−zz2 ( i )∗ww22( i )

g5ob ( i )=zz2 ( i )∗ww12( i )+zz1 ( i )∗ww22( i )

c

f1ob ( i )=hsvs ( i , 1 )

f2ob ( i )=hsvs ( i , 2 )

f4ob ( i )=hsvs ( i , 3 )

f5ob ( i )=hsvs ( i , 4 )

c

hsvs ( i , 1 )= ( g1ob ( i )+1 . )∗ f1ob ( i )+g4ob ( i )∗ f2ob ( i )

hsvs ( i ,2)=g2ob ( i )∗ f1ob ( i )+( g5ob ( i )+1 . )∗ f2ob ( i )

hsvs ( i , 3 )= ( g1ob ( i )+1 . )∗ f4ob ( i )+g4ob ( i )∗ f5ob ( i )
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hsvs ( i ,4)=g2ob ( i )∗ f4ob ( i )+( g5ob ( i )+1 . )∗ f5ob ( i )

c

hsvs ( i ,7)= hsvs ( i , 1 ) ∗ hsvs ( i ,1)+ hsvs ( i , 2 ) ∗ hsvs ( i , 2 )

hsvs ( i ,8)= hsvs ( i , 1 ) ∗ hsvs ( i ,3)+ hsvs ( i , 2 ) ∗ hsvs ( i , 4 )

hsvs ( i ,9)= hsvs ( i , 1 ) ∗ hsvs ( i ,3)+ hsvs ( i , 2 ) ∗ hsvs ( i , 4 )

hsvs ( i ,10)=hsvs ( i , 3 ) ∗ hsvs ( i ,3)+ hsvs ( i , 4 ) ∗ hsvs ( i , 4 )

c

hsvs ( i ,11)=hsvs ( i , 1 ) / s q r t ( hsvs ( i , 7 ) )

hsvs ( i ,12)=hsvs ( i , 2 ) / s q r t ( hsvs ( i , 7 ) )

c

d1 ( i )=e1 ( i )

d2 ( i )=e2 ( i )

d4 ( i )=e4 ( i )

d5 ( i )=e5 ( i )

d6 ( i )=e6 ( i )

c

enddo

c

c element l o c a l s t r a i n s

c

e l s e

do i= l f t , l l t

d1 ( i )=e1 ( i )

d2 ( i )=e2 ( i )

d4 ( i )=e4 ( i )

d5 ( i )=e5 ( i )

d6 ( i )=e6 ( i )

enddo

endif

c

i f ( ishrmp (mt ) . l t . 0 ) then

c a l l usr_temps ( a ( ntmp0+1) , a ( n19 ) , itemp , temps , l f t , l l t , ix1 , ix2 ,

. ix3 , ix4 , i x s , i x s ( 1 , 2 ) , i x s ( 1 , 3 ) , i x s ( 1 , 4 ) ,num_nods , itopaz ,

. nnm1, rcoor , scoor , tcoor )

endif

c

c Get thermal h i s t o r y v a r i a b l e s from thermal

c user material

c

c a l l get_thhsv ( nthhsv , thhsv , itemp , l f t , l l t ,

1 num_nods , itopaz , nnm1, rcoor , scoor , tcoor )

c

c energy c a l c u l a t i o n s

c

do 33 i= l f t , l l t

einc ( i )=d1 ( i )∗ s i g 1 ( i )+d2 ( i )∗ s i g 2 ( i )+d4 ( i )∗ s i g 4 ( i )+d5 ( i )∗ s i g 5 ( i )

1 +d6 ( i )∗ s i g 6 ( i )

33 continue

c
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c v e c t o r i z a t i o n f l a g

c

i v e c t=i v e c t r (mt)

c

mte40=mt−40

c

c s c a l a r umat

c

i f ( i v e c t . eq . 0 ) then

do 120 i= l f t , l l t

c

c gathering o f v a r i a b l e s

c

index=i

dt1=d t 1 s i z ( i )

eps (1)=d1 ( i )

eps (2)=d2 ( i )

eps (3)=d3 ( i )

eps (4)=d4 ( i )

eps (5)=d5 ( i )

eps (6)=d6 ( i )

s i g (1)= s i g 1 ( i )

s i g (2)= s i g 2 ( i )

s i g (3)= s i g 3 ( i )

s i g (4)= s i g 4 ( i )

s i g (5)= s i g 5 ( i )

s i g (6)= s i g 6 ( i )

epsp=epsps ( i )

temper=temps ( i )

f a i l e l =. f a l s e .

c

i f ( no_hsvs . gt . 0 ) then

do j=1,no_hsvs

hsv ( j )=hsvs ( i , j )

enddo

endif

i f ( ihyper (mt ) . ne . 0 ) then

do j=1,9

hsv ( no_hsvs+ j )=hsvs ( i , ind_defgrad−1+ j )

enddo

endif

i f ( nthhsv . gt . 0 ) then

do j=1, nthhsv

t h h s v i ( j )= thhsv ( i , j )

enddo

endif

c

c c a l l user developed s u b r o u t i n e s here

c
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go to ( 4 1 , 4 2 , 4 3 , 4 4 , 4 5 , 4 6 , 4 7 , 4 8 , 4 9 , 5 0 ) , mte40

41 c a l l umat41 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

42 c a l l umat42 (cm(mx+1) , eps , s ig , hsv , dt1 , capa , ’ s h e l l ’ , t t , crv ,

. temper )

go to 60

43 c a l l umat43 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

44 c a l l umat44 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

45 c a l l umat45 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

46 c a l l umat46 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv , thhsvi , nthhsv )

go to 60

47 c a l l umat47 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

48 c a l l umat48 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

49 c a l l umat49 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

go to 60

50 c a l l umat50 (cm(mx+1) , eps , s ig , epsp , hsv , dt1 , capa , ’ s h e l l ’ , t t ,

. temper , f a i l e l , crv )

c

c s c a t t e r i n g o f v a r i a b l e s

c

60 i f ( no_hsvs . gt . 0 ) then

do j=1,no_hsvs

hsvs ( i , j )=hsv ( j )

enddo

endif

c

d3 ( i ) =eps ( 3 )

i f ( f a i l e l ) then

s i g 1 ( i )=0.

s i g 2 ( i )=0.

s i g 3 ( i )=0.

s i g 4 ( i )=0.

s i g 5 ( i )=0.

s i g 6 ( i )=0.

f a i l u r =. t rue .

i f a i l ( i )=1
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f a i l ( i )=0.

e l s e

s i g 1 ( i )= s i g ( 1 )

s i g 2 ( i )= s i g ( 2 )

s i g 3 ( i )= s i g ( 3 )

s i g 4 ( i )= s i g ( 4 )

s i g 5 ( i )= s i g ( 5 )

s i g 6 ( i )= s i g ( 6 )

endif

epsps ( i )=epsp

120 continue

c

c v e c t o r umat

c

e l s e

c

c assume no f a i l e d elements

c

do i= l f t , l l t

f a i l e l s ( i )= . f a l s e .

enddo

c

c c a l l user developed s u b r o u t i n e s here

c f i r s t h i s t o r y v a r i a b l e i s the one r e q u e s t e d

c

i f (mt . eq . 4 1 ) then

c a l l umat41v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

e l s e i f (mt . eq . 4 2 ) then

c a l l umat42v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

e l s e i f (mt . eq . 4 3 ) then

c a l l umat43v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

e l s e i f (mt . eq . 4 4 ) then

c a l l umat44v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

e l s e i f (mt . eq . 4 5 ) then

c a l l umat45v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

e l s e i f (mt . eq . 4 6 ) then

c a l l umat46v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv ,
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. thhsv , nthhsv )

e l s e i f (mt . eq . 4 7 ) then

c a l l umat47v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

e l s e i f (mt . eq . 4 8 ) then

c a l l umat48v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , ipt , a ( n8 ) , a ( n9 ) )

e l s e i f (mt . eq . 4 9 ) then

c a l l umat49v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , ipt , temps )

e l s e i f (mt . eq . 5 0 ) then

c a l l umat50v (cm(mx+1) ,d1 , d2 , d3 , d4 , d5 , d6 , sig1 , sig2 ,

. s ig3 , sig4 , sig5 , sig6 , epsps , hsvs , l f t , l l t ,

. d t 1 s i z , capa , ’ s h e l l ’ , t t , temps , f a i l e l s , nlq , crv )

endif

c

c check f o r f a i l u r e

c

do i= l f t , l l t

i f ( f a i l e l s ( i ) ) then

s i g 1 ( i )=0.

s i g 2 ( i )=0.

s i g 3 ( i )=0.

s i g 4 ( i )=0.

s i g 5 ( i )=0.

s i g 6 ( i )=0.

f a i l u r =. t rue .

i f a i l ( i )=1

f a i l ( i )=0.

endif

enddo

endif

c

c energy c a l c u l a t i o n s

c

do 130 i= l f t , l l t

einc ( i )=d1 ( i )∗ s i g 1 ( i )+d2 ( i )∗ s i g 2 ( i )+d4 ( i )∗ s i g 4 ( i )+d5 ( i )∗ s i g 5 ( i )

1 +d6 ( i )∗ s i g 6 ( i )+einc ( i )

130 continue

c

return

900 format (/ ’ ∗∗∗ Error User defined m at e r i a l in part ’ , i12 ,

. ’ exceeds the current l i m i t ’ /

. 10x , ’ of h i s t o r y v a r i a b l e s f o r s h e l l s . ’ )

end
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Listing B.2: FORTRAN source code for umat48 subroutine. This subroutine calculates the local elemental

stress within each shell element, input variables passed from urmats subroutine (Listing B.1).

subroutine umat48 (cm, eps , s ig , epsp , hsv , dt1 , capa , etype , t t ,

1 temper , f a i l e l , crv )

c

c user material subroutine modified by kevin lau

c acknowlegment and thanks to daniel e i n s t e i n

c

c approach d e t a i l e d in : ‘ dynamic f i n i t e element implementation

c o f nonlinear , a n i s o t r o p i c h y p e r e l a s t i c b i o l o g i c a l membranes

c by e i n s t e i n e t al . in comp . meth . in biomech . and biomed .

c eng . 2003 , vol . 6 ( 1 ) , pp.33−44 , doi :10.1080/1025584021000048983

c

c v a r i a b l e l i s t

c

c cm( 1 ) − bulk modulus

c cm( 2 ) − shear modulus

c cm( 3 ) − s e f option

c cm( 4 ) − s t r e s s s c a l e f a c t o r , d e f a u l t output kPa

c cm( 5 ) − 1 s t material parameter

c cm( 6 ) − 2nd material parameter

c cm( 7 ) − 3rd material parameter

c cm( 8 ) − 4 th material parameter ( t r a n s v e r s e modulus )

c cm( 9 ) − r e s e t deformation switch (1/0 = t r u e / f a l s e )

c eps ( 1 ) − l o c a l / r o t a t e d xx s t r a i n increment

c eps ( 2 ) − l o c a l / r o t a t e d yy s t r a i n increment

c eps ( 3 ) − l o c a l / r o t a t e d zz s t r a i n increment

c eps ( 4 ) − l o c a l / r o t a t e d xx s t r a i n increment

c eps ( 5 ) − l o c a l / r o t a t e d xx s t r a i n increment

c eps ( 6 ) − l o c a l / r o t a t e d xx s t r a i n increment

c s i g ( 1 ) − l o c a l x s t r e s s

c s i g ( 2 ) − l o c a l y s t r e s s

c s i g ( 3 ) − l o c a l z s t r e s s

c s i g ( 4 ) − l o c a l xy s t r e s s

c s i g ( 5 ) − l o c a l yz s t r e s s

c s i g ( 6 ) − l o c a l zx s t r e s s

c hsv ( 1 ) − F1OB , F ( 1 , 1 )

c hsv ( 2 ) − F2OB , F ( 2 , 1 )

c hsv ( 3 ) − F4OB , F ( 1 , 2 )

c hsv ( 4 ) − F5OB , F ( 2 , 2 )

c hsv ( 5 ) − n1 CR/OB @ t

c hsv ( 6 ) − n2 CR/OB @ t

c hsv ( 7 ) − C1OB, C( 1 , 1 )

c hsv ( 8 ) − C2OB, C( 2 , 1 )

c hsv ( 9 ) − C4OB, C( 1 , 2 )

c hsv ( 1 0 ) − C5OB, C( 2 , 2 )

c hsv ( 1 1 ) − n1 , CR/OB @ t+1

c hsv ( 1 2 ) − n2 , CR/OB @ t+1
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c hsv ( 1 3 ) − cos ( beta )

c hsv ( 1 4 ) − s i n ( beta )

c hsv ( 1 5 ) − p

c hsv ( 1 6 ) − s i g ( 1 ) l o c a l

c hsv ( 1 7 ) − s i g ( 2 ) l o c a l

c hsv ( 1 8 ) − s i g ( 3 ) l o c a l

c hsv ( 1 9 ) − s i g ( 4 ) l o c a l

c hsv ( 2 0 ) − s i g ( 5 ) l o c a l

c hsv ( 2 1 ) − s i g ( 6 ) l o c a l

c hsv ( 2 2 ) − max in−plane p r i n c i p a l s t r e t c h

c hsv ( 2 3 ) − f i b r e s t r e t c h

c

include ’ nlqparm ’

include ’ i o u n i t s . inc ’

common/bk06/idmmy, iaddp , i f i l , maxsiz , ncycle , time ( 2 , 3 0 )

dimension cm( ∗ ) , eps ( ∗ ) , s i g ( ∗ ) , hsv ( ∗ ) , crv ( lq1 , 2 , ∗ )

character ∗5 etype

l o g i c a l f a i l e l

c

c subroutine v a r i a b l e s

r e a l ∗8 f1 , f2 , f4 , f 5

r e a l ∗8 c1 , c2 , c4 , c5 , c9

r e a l ∗8 vrc1 , vrc2 , vrc4 , vrc5 , vrc9

r e a l ∗8 a01 , a02

r e a l ∗8 v1 , v4

r e a l ∗8 p , q , s e f i 1 , s e f i 4

r e a l ∗8 s1 , s2 , s4 , s5

r e a l ∗8 bb11 , bb12 , bb21 , bb22

r e a l ∗8 sig1 , sig2 , s i g 4

r e a l ∗8 yy1 , yy2

r e a l ∗8 cc11 , cc12 , cc21 , cc22

c

c s h e l l element check

c

i f ( etype . eq . ’ s h e l l ’ ) then

c

c document user material number in l o g

c

i f ( ncycle . eq . 1 ) then

write ( i o t t y , 2 1 0 0 )

write ( iohsp , 2 1 0 0 )

write ( iomsg , 2 1 0 0 )

write ( i o t t y , 2 1 0 1 )

write ( iohsp , 2 1 0 1 )

write ( iomsg , 2 1 0 1 )

write ( i o t t y , 2 1 0 2 )

write ( iohsp , 2 1 0 2 )

write ( iomsg , 2 1 0 2 )
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write ( i o t t y , 2 1 0 3 )

write ( iohsp , 2 1 0 3 )

write ( iomsg , 2 1 0 3 )

write ( i o t t y , 2 1 0 4 )

write ( iohsp , 2 1 0 4 )

write ( iomsg , 2 1 0 4 )

write ( i o t t y , 2 1 0 5 )

write ( iohsp , 2 1 0 5 )

write ( iomsg , 2 1 0 5 )

write ( i o t t y , 2 1 0 6 )

write ( iohsp , 2 1 0 6 )

write ( iomsg , 2 1 0 6 )

write ( i o t t y , 2 1 0 7 )

write ( iohsp , 2 1 0 7 )

write ( iomsg , 2 1 0 7 )

write ( i o t t y , 2 1 0 8 )

write ( iohsp , 2 1 0 8 )

write ( iomsg , 2 1 0 8 )

2100 format (/ ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ )

2101 format ( ’ ∗∗∗ USING CUSTOM MATERIAL UMAT48 ∗∗∗ ’ )

2102 format ( ’ ∗∗∗ FOLLOWING PARAMETERS REQUIRED ∗∗∗ ’ )

2103 format ( ’ ∗∗∗ LMC = 9 ∗∗∗ ’ )

2104 format ( ’ ∗∗∗ NHV = 23 ∗∗∗ ’ )

2105 format ( ’ ∗∗∗ IORTHO = 1 ∗∗∗ ’ )

2106 format ( ’ ∗∗∗ IHYPER = 0 ∗∗∗ ’ )

2107 format ( ’ ∗∗∗ ELFORM = 11 ∗∗∗ ’ )

2108 format ( ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ / )

endif

c

c r i g h t Cauchy Green t e n s o r and i t s i n v e r s e (C and C^−1)

c

f 1=hsv ( 1 )

f 2=hsv ( 2 )

f 4=hsv ( 3 )

f 5=hsv ( 4 )

c

yy1=hsv ( 5 )

yy2=hsv ( 6 )

c

c1=hsv ( 7 )

c2=hsv ( 8 )

c4=hsv ( 9 )

c5=hsv ( 1 0 )

c9=1/( c1∗c5−c4∗c2 )

c

vrc1=c5∗c9 ;

vrc2=−c2∗c9

vrc4=vrc2

vrc5=c1∗c9
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vrc9=c1∗c5−c4∗c2

c

c f i b r e d i r e c t i o n v e c t o r s a0 , taken from beta angle

c

a01=hsv ( 1 3 )

a02=hsv ( 1 4 )

c

c deformation i n v a r i e n t s I1 and I4

c

v1=c1+c5+c9

v4=a01 ∗ ( c1∗a01+c4∗a02)+a02 ∗ ( c2∗a01+c5∗a02 )

i f ( v4 . l t . 1 . ) then

v4=1.

endif

c

c s t r a i n energy f u n c t i o n s

c

q=cm( 6 ) ∗ ( ( v1−3 . )∗∗2 . )+cm( 7 ) ∗ ( ( ( v4 ∗ ∗0 . 5 ) −1 . ) ∗ ∗4 . )

s e f i 1 = (2.∗cm( 5 )∗cm( 6 ) ) ∗ ( v1−3.)∗exp ( q )

s e f i 4 = (2.∗cm( 5 )∗cm( 7 ) ∗ ( ( ( v4 ∗ ∗0 . 5 ) −1 . ) ∗ ∗3 . ) ∗ ( 1 . / ( v4 ∗ ∗ 0 . 5 ) ) ) ∗ exp ( q )

c

c P r e s s u r e Lagrange m u l t i p l i e r

c

p=−2.∗ s e f i 1 ∗c9

hsv (15)=p

c

c 2nd Piola−K i r c h h o f f s t r e s s tensor , S , in kPa

c

s1=2.∗ s e f i 1 +2.∗ s e f i 4 ∗a01∗a01+p∗ vrc1

s2=2.∗ s e f i 4 ∗a01∗a02+p∗ vrc2

s4=s2

s5=2.∗ s e f i 1 +2.∗ s e f i 4 ∗a02∗a02+p∗ vrc5

c

c push forward to Cauchy s t r e s s

c

bb11=f 1 ∗ s1+f 4 ∗ s4

bb12=f 2 ∗ s1+f 5 ∗ s4

bb21=f 1 ∗ s2+f 4 ∗ s5

bb22=f 2 ∗ s2+f 5 ∗ s5

c

s i g 1=f 1 ∗bb11+f 4 ∗bb21

s i g 2=f 2 ∗bb12+f 5 ∗bb22

s i g 4=f 1 ∗bb12+f 4 ∗bb22

c

s i g 1=cm( 4 )∗ s i g 1

s i g 2=cm( 4 )∗ s i g 2

s i g 4=cm( 4 )∗ s i g 4

c

c r o t a t e forward to element b a s i s

179



B.5. User defined material Appendix B. Numerical Methods

cc11=yy1∗ s i g 1+yy2∗ s i g 4

cc12=−yy2∗ s i g 1+yy1∗ s i g 4

cc21=yy1∗ s i g 4+yy2∗ s i g 2

cc22=−yy2∗ s i g 4+yy1∗ s i g 2

c

s i g (1)=yy1∗cc11+yy2∗cc21

s i g (2)=−yy2∗cc12+yy1∗cc22

s i g (4)=yy1∗cc12+yy2∗cc22

c

c membrane assumption

c

s i g ( 3 )=0 .

c

c t r a n s v e r s e s t r e s s e s c a l c u l a t e d in element b a s i s

c

s i g (5)= s i g (5)+capa∗cm( 4 )∗cm( 8 )∗ eps ( 5 )

s i g (6)= s i g (6)+capa∗cm( 4 )∗cm( 8 )∗ eps ( 6 )

c

c h i s t o r y v a r i a b l e s

c

hsv (16)= s i g ( 1 )

hsv (17)= s i g ( 2 )

hsv (18)= s i g ( 3 )

hsv (19)= s i g ( 4 )

hsv (20)= s i g ( 5 )

hsv (21)= s i g ( 6 )

c

hsv ( 2 2 )=0 . 5∗ ( ( c1+c5)+ s q r t ( c1∗c1+c5∗c5−2.∗c1∗c5+4.∗c4∗c2 ) )

hsv (23)= s q r t ( v4 )

c

c update the n1 , n2 with new n1 , n2

c

hsv (5)=hsv ( 1 1 )

hsv (6)=hsv ( 1 2 )

c

e l s e

write ( i o t t y , 2 0 ) etype

write ( iohsp , 2 0 ) etype

write ( iomsg , 2 0 ) etype

c a l l adios ( 2 )

endif

c

20 format (/

1 ’ ∗∗∗ Error element type ’ , a , ’ can not be ’ ,

2 ’ run with the current m at e r i a l model . ’ )

c

return

end
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Appendix C

Three–Dimensional Visualisation

C.1 Edge–to–edge repair

Figure C.1: Stereoscopic visualisation of the edge–to–edge repair. Best viewed in the digital version. Ren-
dered using POV–Ray 3.6.1 [139].
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a b s t r a c t

Modelling and simulation of heart valves is a challenging biomechanical problem due to anatomical
variability, pulsatile physiological pressure loads and 3D anisotropic material behaviour. Current valvular
models based on the finite element method can be divided into: those that do model the interaction
between the blood and the valve (fluid–structure interaction or ‘wet’ models) and those that do not
(structural models or ‘dry’ models).

Here an anatomically sized model of the mitral valve has been used to compare the difference between
structural and fluid–structure interaction techniques in two separately simulated scenarios: valve closure
and a cardiac cycle. Using fluid–structure interaction, the valve has been modelled separately in a straight
tubular volume and in a U-shaped ventricular volume, in order to analyse the difference in the coupled
fluid and structural dynamics between the two geometries.

The results of the structural and fluid–structure interaction models have shown that the stress distri-
bution in the closure simulation is similar in all the models, but the magnitude and closed configuration
differ. In the cardiac cycle simulation significant differences in the valvular dynamics were found between
the structural and fluid–structure interaction models due to difference in applied pressure loads. Com-
parison of the fluid domains of the fluid–structure interaction models have shown that the ventricular
geometry generates slower fluid velocity with increased vorticity compared to the tubular geometry.

In conclusion, structural heart valve models are suitable for simulation of static configurations (opened
or closed valves), but in order to simulate full dynamic behaviour fluid–structure interaction models are
required.

© 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Located between the left atrium and left ventricle of the heart,
the mitral valve ensures unidirectional flow of blood from atrium
to ventricle and is characterised by an asymmetric bicuspid leaflet
structure and the chordae tendineae: chord-like structures which
tether the valve directly to the heart wall, preventing inversion of
the valve. The mitral valve leaflets form the largest surface area of
the four heart valves and are subjected to the highest pressure load
during systole, a factor which contributes to the degeneration and
dysfunction of a diseased valve. Correct function of the mitral valve
requires the synergy of four valvular components: (1) the annu-
lus, (2) the leaflets, (3) the chordae tendineae and (4) the papillary
muscles. Valvular dysfunction arises from functional changes in the

∗ Corresponding author at: Centre for Mathematics and Physics in the Life Sciences
and Experimental Biology (CoMPLEX), UCL, Physics Building, Gower Street, London
WC1E 6BT, United Kingdom.

E-mail addresses: k.lau@ucl.ac.uk (K.D. Lau), v.diaz@ucl.ac.uk (V. Diaz),
p.scambler@ich.ucl.ac.uk (P. Scambler), g.burriesci@ucl.ac.uk (G. Burriesci).

ultrastructure in any of the components, which can be caused by a
range of factors such as infection, variability in the circulatory sys-
tem or old age [7]. The mitral valve controls the unidirectional flow
of oxygenated blood into the left ventricle from the left atrium and
changes in valve function have a global effect on the cardiovas-
cular system. Depending on the severity of the loss of function,
a heart valve replacement or corrective valvular repair (such as
annuloplasty or the edge-to-edge technique) is required to restore
functionality of the valve.

The biomechanics of the mitral valve is a complex problem
due to the large deformations of the structure, 3D anisotropic
non-linear elastic behaviour of the valvular tissue and pulsatile
haemodynamic loads during the cardiac cycle. Imaging techniques
such as magnetic resonance imaging and echocardiography [3]
allow the visualisation of the heart valves, linking anatomy to
valvular function, but do not yield any information on the loads
applied to the valve, nor the coupled fluid and structural dynam-
ics of the valve and the blood; therefore, modelling is the most
suitable technique method of analysing valve function. It is hoped
that with the development and simulation of anatomical models
under physiological conditions it will be possible to gain a quali-

1350-4533/$ – see front matter © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.medengphy.2010.07.008
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Fig. 1. (a) Profile of the mitral valve model, with and without the finite element shell mesh; leaflet labels: A, anterior leaflet; C, commissural leaflet; P1/P3 and P2, side and
central cusps of the posterior leaflet. (b) Model profile as viewed from the left atrium with the anteroposterior (22.5 mm) and commissural (30 mm) diameters labelled; the
reflected component of the geometry is represented in grey.

tative insight into valvular function and the suitability of different
healthcare options for diseased valves.

Models of the mitral valve can be broadly divided into two
groups: (1) structural models which only contain the structural
domain of the valve and (2) fluid–structure interaction (FSI) models
which include both the fluid domain of the blood and the structural
domain of the valve. In a ‘dry’, structural model the transvalvular
pressure load is applied directly to the valve structure as a bound-
ary condition and has been modelled as uniformly distributed over
the surface in all current models. In a ‘wet’, FSI model the two
domains are coupled together and corresponding dynamics are
solved simultaneously (changes in the structural domain affect
the fluid domain and vice versa); the pressure load applied to the
valve structure is defined from the coupling applied to the two
domains, not the boundary condition applied to the model, and
is non-uniform.

Numerical studies of the mitral valve have been performed by
a number of authors, with each using modelling to examine the
role of different valvular aspects; for example the role of the chor-
dae tendineae [13] or the effect of annular dilation and correction
[16] have both been previously studied using structural models.
Currently the only FSI model of a native mitral valve available in
the literature has been developed by Kunzelman et al. [10], this
work was characterised by positioning the valve in a tubular fluid
volume in which valve closure was simulated. However as only
closure was performed no details regarding the dynamics of open-
ing/closure were presented, with comparisons between FSI and
structural models made by only comparing the stress-state of the
valve in a closed configuration.

Hence the objective of this work is to verify how the predicted
valve behaviour is affected by the difference in modelling tech-
niques currently used, with particular emphasis on the difference
in valvular dynamics between structural and FSI techniques and
the influence of the fluid volume on the valve. Using a model of
the mitral valve, simulations of both valve closure and the entire
cardiac cycle have been performed in “dry” (structural only) and
“wet” (FSI) scenarios using a commercially available finite element
code. As previous FSI studies of the mitral valve have been per-
formed solely in tubular geometries, in this work the effect of the
fluid volume on valve dynamics and vice versa is quantified with
FSI simulations in both tubular and ventricular-shaped fluid vol-
umes. This has particular implications for hydrodynamic testing of
artificial valves, as these are performed in straight fluid chambers
as required by current international regulations (ISO 5840:2005 [8]
and FDA Replacement Heart Valve Guidance).

In order to simplify the complexity of the problem, certain
aspects of the valve model have been simplified: the valve leaflets
and chordae tendineae have been modelled as linear elastic
materials, neglecting their non-linear constitutive behaviour and
anisotropy, and the surrounding tissues (including the ventricular
muscle) have been assumed to be rigid.

2. Methods

The structural and fluid dynamics of the mitral valve and the
surrounding blood were simulated using the explicit finite ele-
ment code LS-DYNA [5]. The geometry and finite element mesh
of all the models described in this work were generated using
ANSYS (Release 11.0) and subsequently converted to a LS-DYNA
compatible format using a custom written script. All the numerical
simulations were performed on a Intel Xeon 2.66 GHz workstation
operating with LS-DYNA 971 Release 3.2.1. Post-processing of the
data was performed with LS-PREPOST and Ensight.

2.1. Mitral valve model

The different components of the mitral valve were modelled
using anatomical measurements and descriptions from the liter-
ature [6,14]. The initial geometry of the valve model was defined
with the leaflets in an open configuration and in order to reduce the
computational time required, only half the model was simulated;
the plane of symmetry was defined as the anteroposterior axis of
the valve, as shown in Fig. 1. A summary of the model parameters
is listed in Table 1.

The annulus of the model has been defined as a planar D-shaped
orifice, which is fixed spatially. The annular proportion and length
of the different cusps have been defined from anatomical mea-
surements of excised human valves [14]. Studies on porcine mitral
valves have shown that the annular length of an intact valve is
shorter than that of an excised valve [9], for this reason the annular
length of each cusp segment has been adjusted from the reported
excised value and scaled to the corresponding annular segment of
the model. The total annular length of the model is 85.7 mm and the
annular lengths of the different leaflet sections are listed in Table 1.
The leaflets of the valve model extend outwards from the annu-
lus towards the free margin of the leaflets, which has been defined
using splines connecting the midpoint of each cusps (defined as
the leaflet height) to an interface point, defined as 7.5 mm above
the annular plane, between each cusp.

In this model only the primary chordae tendineae, which are
attached to the free margin of the leaflet, have been modelled. The
number and location of these chordae have been based on anatom-
ical descriptions [11,14]. These chordae have been modelled as

Table 1
Dimensional parameters of the mitral valve model.

Leaflet Annular length
(mm)

Leaflet height
(mm)

Leaflet area (mm2)

Anterior 28.9 23.4 444.3
Commissural 7.0 8.7 46.1
Posterior (P2) 17.4 13.8 177.7
Posterior (P1/P3) 12.7 11.2 111.4
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Table 2
Shell/beam/solid element properties. Density of all elements, � = 1000 kg m−3.

Shell Beam Solid

Thickness (mm) 0.75 – –
Cross-sectional area (mm2) – 0.6 –
Elastic modulus (MPa) 3 40 –
Bulk modulus (MPa) – – 22
Dynamic viscosity (Pa s) – – 4.0 × 10−3

attached to a static node which represents the papillary muscle tip,
positioned in a plane 20.0–22.0 mm above the annular plane (Fig. 1).
The location of papillary tip of each chordae tendineae was adjusted
to ensure coaptation of the leaflet occurs with the application of
physiological pressure.

2.1.1. Mitral valve finite element model
The geometry of the valve model was discretised into a finite ele-

ment mesh of shell elements for the leaflets and beam elements for
chordae tendineae. The finite element shells and beams used in this
model were Belytschko–Tsay shell elements and Hughes–Liu beam
elements respectively. The beam elements have been modelled as
cables, which collapse under compression as they generate no force.
The physical properties of the shell and beam elements are listed
in Table 2 and the density of all elements was set to 1000 kg m−3.

The independence of the finite element solution to the size
of the elements in the valvular model was determined indepen-
dently of the fluid model. A simulated pressure ramp of 120 mmHg
(∼16 kPa) over 300 ms was applied and sustained on the struc-
ture of the model until the solution converged. These simulations
were run using a global nodal damping factor in LS-DYNA that
was set to 0.9965, a value which was based on previous experi-
ence [1]. The simulations were considered converged when the
current global kinetic energy Eke was reduced to a value smaller
than the maximum of the global kinetic energy Emax

ke multiplied by
the convergence tolerance factor, here set to 1 × 10−6. The solution
was considered independent when no observable difference in the
stress pattern was noted and the difference in the value of the peak
principal stress was less than 1% between models. The final model
consisted of 2688 shell elements and 333 beam elements (Fig. 1).

2.2. Fluid volumes: tubular and ventricular models

The valve model has been inserted and simulated within: (1) a
tube-shaped fluid volume and (2) a ventricular-shaped fluid vol-

ume. These fluid volumes are static and rigid, with a fixed volume.
The geometry of these fluid volumes represent the left ventricle
of the heart only and have been sized on the volumetric measure-
ments of the left ventricle. As the FSI simulations include aspects
of systole and diastole, an intermediate volume of 35 cm3 for the
atrial section and 85 cm3 for the ventricular section was chosen.
The fluid volume geometries and the surfaces used to apply the
transvalvular pressures are shown in Fig. 2.

2.2.1. Fluid volumes: finite element models
The geometry of the two fluid volumes was discretised into solid

LS-DYNA ALE fluid elements, with a mesh designed such that the
valvular orifice matched the shape of the valve annulus (Fig. 2).
The fluid was modelled as a Newtonian fluid and was defined with
blood-like properties (see Table 2) and a density of 1000 kg m−3.
As the fluid model of LS-DYNA is compressible, the bulk modulus
must be defined. In an explicit finite element formulation this factor
controls the size of the maximum timestep of the simulation; thus,
to reduce the required simulation time the value of the the bulk
modulus was reduced to 1% of its physical value, following [10].
This was determined not to affect the solution of the simulation by
comparison to the analytical solution to infinite channel flow.

As with the structural mesh, the element size of the fluid mesh
was selected such that the independence of the solution to the mesh
was obtained. This was performed by applying a velocity boundary
condition to the inlet of each model equal to 1 m s−1. The solu-
tion was considered converged when the absolute difference in the
velocity between subsequent timesteps was of the order of 10−6.
Once stabilised, the velocity across the valve plane was compared
until the difference between subsequent models was reduced to
less than 5% in the region of interest. The final models of the tubular
and ventricular volumes consisted of 81,920 and 43,008 solid brick
elements respectively, as shown in Fig. 2. The ventricular pressure
plane (VP) was defined at the plane of the outlet of the fluid volume
in both FSI models.

2.3. Transvalvular pressure load

Using the structural and FSI models, the structural and fluid
dynamics have been simulated using two different pressure loads:
(1) early systolic pressure ramp (ESPR) simulating valve closing and
(2) a full cardiac cycle simulating both valve opening and closing
(see Fig. 3) [12]. For the early systolic ramp, the transvalvular pres-
sure was measured from the point of the left atrial/left ventricle

Fig. 2. (a) Tubular fluid volume and mesh and (b) ventricular fluid volume and mesh; figure labels AP and VP denote the atrial and ventricular pressure surfaces respectively.
(c) Schematic outline of the ventricular fluid volume with the solid boundaries (solid lines) and annular orifice (dotted line) labelled.
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Fig. 3. Transvalvular pressure load, values after [12]. The ventricular closing pres-
sure curve section is defined in grey. D1, 1st diastolic phase, valve open; ESPR, early
systolic pressure ramp, valve closing; S, systolic phase, valve closed; D2, 2nd dias-
tolic phase, valve open; A, atrial systole (A wave); X, atrial relaxation (X wave); V,
atrial filling (V wave); Y, atrial emptying (Y descent).

pressure cross-over until the maximum of ventricular pressure. The
maximum ventricular pressure was sustained for a further 22 ms,
in order to ensure the valve was in a static configuration, taking the
total simulation time to 200 ms.

2.3.1. Structural simulation
The transvalvular pressures described in Fig. 3 were applied

directly to the structural model as a uniform pressure load dis-
tributed over the corresponding atrial and ventricular sides of the
leaflet structure. As before, the nodal velocities of the valve struc-
ture was scaled using a global damping factor (see Section 2.1.1).
In order to model the valve as a single surface structure, a contact
penalty condition was applied to all the shell elements of the model.

2.3.2. Fluid–structure simulation
In the FSI simulations, the transvalvular pressure was applied

to the boundaries of the fluid models (see Fig. 2) and the result-
ing fluid flow has been coupled to the structure of the valve by a
penalty coupling method: if the fluid contacts and penetrates the
structure of the valve, a resistive force linearly proportional to the
distance penetrated is applied to both the fluid and the structure,
thus coupling them together.

Under the application of the ventricular pressure ramp (Fig. 3)
the fluid–structure coupling has only been applied to the ventric-

ular side of the valve, as fluid only approaches from this side. In
the full cardiac cycle simulation this coupling was applied to both
atrial and ventricular sides of the valve, as fluid flow approaches
the valve from both atrial and ventricular sides.

Fluid flow was restricted to flow through the valve by applying a
no-slip condition to the nodes in the plane of the valve. The bound-
aries of the volume, with the exception of the inflow and outflow
sections (AP and VP in Fig. 2), were also defined as no-slip.

3. Results

3.1. Valve closure

Under the application of the ventricular pressure curve valvular
closure was simulated. The valve leaflets coapt together and remain
closed until the end of the simulation. Here the structural and FSI
models have been analysed and compared at closure, when the
structure is in a static, closed configuration. The maximum values
of the principal stresses at t = 200 ms and their locations in the three
different models are listed in Table 3. The corresponding stress
distribution in the valve, as viewed from the ventricular side, is
presented in Fig. 4. The configuration of the valve, represented by
the nodes in the anteroposterior section, at t = 200 ms is displayed
in Fig. 5.

3.2. Cardiac cycle

Under the application of the cardiac cycle pressure curve valvu-
lar opening, closing and reopening was simulated. The results of
the two FSI simulations have been compared against each other
and also with the structural simulation subject to the same pres-
sure load. Table 4 lists the maximum resultant nodal velocity in
the anteroposterior section of the valve during opening and clos-
ing, accompanied with the time of occurrence. Fig. 6 illustrates the
corresponding valve configuration and nodal velocity during the
closing phase at the time of maximal nodal velocity in each model.

Fig. 7 illustrates the change in geometric orifice area (GOA) of
the different models throughout the simulated cardiac cycle. The
GOA was determined by measuring the area enclosed by the valve
leaflets, relative to a plane parallel to the annulus at the height of
the commissural/anterior leaflet cleft, at 100 ms intervals during
the cycle.

Table 3
Comparision of maximum value of principal stress and valvular location at valve
closure.

Model Maximum principal stress (kPa) Location

Structural 566.4 P2/P3 fold
Tubular 626.3 P2/P3 fold
Ventricular 635.3 P2/P3 fold

Fig. 4. Maximum principal stresses in the valve at t = 200 ms in units of MPa in: (a) the structural model, (b) the tubular model and (c) the ventricular model. Stress range
from 0 to 550 kPa.
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Fig. 5. Configuration of the valve in the anteroposterior section at t = 200 ms closure
in the structural, tubular and ventricular models.

Table 4
Maximum anteroposterior nodal velocity during closing (C) and opening (O) phases
in the structural, tubular and ventricular models, listed with the time of occurrence.

Model C/O Time (ms) Max. resultant velocity (m s−1)

Structural C 246 0.922
Tubular C 254 1.202
Ventricular C 252 1.058

Structural O 664 0.351
Tubular O 684 0.748
Ventricular O 684 0.657

In the fluid domain, the change of sign in the transvalvular pres-
sure gradient causes the flow to change direction between the D1,
S and D2 phases of the pressure curve (see Fig. 3). In the D1 phase
of the cardiac cycle, the valve is open and flow passes from the
atrial chamber to the ventricular chamber; the flow field during
this phase (t = 200 ms) in the tubular and ventricular models, as
viewed through the symmetry plane of the fluid volume, is shown
in Fig. 8.

Fig. 6. Variation in the geometric orifice area (GOA) during the cardiac cycle for the
structural and FSI models. Ratio measured against initial orifice area at t = 0 ms.

Table 5
Time and maximum magnitude of the nodal fluid z-velocity in valvular plane of the
tubular and ventricular models.

Model Time (ms) Max. z-velocity (m s−1)

Tubular 255 2.738
Ventricular 254 1.857

Table 6
Maximum magnitude of the vorticity during closing (C) and opening (O) phases in
the tubular and ventricular models in the anteroposterior plane, listed with the time
of occurrence.

Model C/O Time (ms) Max. of vorticity (s−1)

Tubular C 257 1.21 × 10−3

Ventricular C 257 0.79 × 10−3

Tubular O 685 0.31 × 10−3

Ventricular O 685 0.35 × 10−3

Following the D1 phase is the S phase, during which the flow
direction reverses causing the valve to close. The closure of the valve
generates a fluid jet, or dynamic regurgitation, forcing fluid back
into the atrial section. The timing and maximum magnitude of the
nodal z-velocity in the valvular plane in the tubular and ventricular
models is listed in Table 5. A particle trace following the velocity
field of the fluid in the tubular and ventricular models at t = 257 ms
is presented in Fig. 9.

After closure of the valve in the S phase, the valve re-opens dur-
ing the D2 phase. As flow enters the ventricular chamber of the
fluid volumes, fluid mixing generates vorticity in the flow. A parti-
cle trace following the velocity field of the fluid in the tubular and
ventricular models at t = 685 ms is presented in Fig. 10. The time
points of both Figs. 9 and 10 were selected to coincide with the
maximum of transvalvular velocity and when the behaviour of the
fluid was most evident. The corresponding maximum vorticity at
bith these timepoints (t = 257 ms and t = 685 ms) in both tubular and
ventricular fluid geometries is listed in Table 6.

4. Discussion

4.1. Valve closure

The configuration of the valve at closure in the different models
is compared in Fig. 5. In all of the models, the leaflets have coapted
and the valve has closed. The gap in the FSI models is a numerical
artifact, which has also been noted by Kunzelman et al. [10]. The
nodal positions at the base of the valve compare well in all the mod-
els, but significant differences arise towards the leaflet tips between
the structural and FSI models; in both the FSI models the tips of the
posterior leaflets are positioned further towards the anterior side
than the structural model. This difference arises from the simpli-
fication of uniform pressure applied to the surface of the valve in
the structural simulation. At the base of the valve, this assumption
holds well as the pressures on each side of the valve corresponds
to the pressure in the atrial and ventricular chambers. Towards the
tips of the leaflets, close to the coapting surfaces, the tranvalvular
pressure is no longer the same as the pressure over the rest of the
body and the assumption of uniform pressure no longer holds. The
resulting non-uniform pressure distribution over the valve results
in the difference in closure exhibited in Fig. 5.

The corresponding distribution of local (elemental) maximum
of the principal stresses are compared in Fig. 4 and their global
maxima at closure are listed in Table 3. Both FSI models presented
higher maximum values of stress than the structural model, with
the ventricular model with the largest value. In all models the peak
stress were located at the fold of the posterior leaflet (P2/P3). From
Fig. 4 it can be seen that the distribution of stress is similar, with



1062 K.D. Lau et al. / Medical Engineering & Physics 32 (2010) 1057–1064

Fig. 7. Valve configuration, through the anteroposterior section, at the time of maximum nodal velocity (see Table 4) in: (a) the structural model and (b) the tubular and
ventricular models. Here the nodal positions have be drawn with the corresponding velocity vectors.

Fig. 8. Tubular and ventricular fluid velocity fields, in the symmetry plane, during diastolic filling phase (D1) at t = 200ms. Velocity range from 0 to 1.3 m s−1.

Fig. 9. Fluid particle trace during valve closure at t = 257 ms in: (a) the tubular model and (b) the ventricular model. Velocity range from 0 to 3.0 m s−1.
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Fig. 10. Fluid particle trace during valve opening at t = 685ms in: (a) the tubular model and (b) the ventricular model. Velocity range from 0 to 0.8 m s−1.

Table 7
Structural and FSI model simulation time for the different pressure loads.

Model Pressure load Approx. simulation time

Structural Closure 6 min
Tubular Closure 18 h
Ventricular Closure 13 h

Structural Cardiac cycle 50 min
Tubular Cardiac cycle 90 h
Ventricular Cardiac cycle 65 h

stress concentrations located at the base of the cusps and at the
folds of the leaflet.

For closure events only, structural models simulate a similar
stress distribution to FSI models, although with a lower magnitude
of stress. However structural models do have a clear advantage over
FSI in terms of the required simulation time, as shown in Table 7.

4.2. Cardiac cycle

The difference in the nodal velocity of the valve structure, in
the anteroposterior section, during opening and closing has been
compared in Table 4. During closure of the valve in the S phase, the
maximum nodal velocity in the structural model is comparable to
the nodal velocities in the FSI simulations. As the valve reopens in
the D2 phase, the maximum nodal velocity in the structural model
is significantly lower than the FSI model.

The nodal coordinates and corresponding velocities of the nodes
in the anteroposterior section of the valve during valve opening (S
phase) of the different models are presented in Fig. 6. In the struc-
tural simulation the maximum nodal velocity occurs at the tip of
the anterior leaflet when the anterior leaflet is close to impacting
the posterior leaflet; whereas in the FSI simulations the maximum
nodal velocities occur close to the centre of the anterior leaflet
whilst the leaflets are still separated by a distance of approximately
5 mm.

From comparing the coaptation of the leaflets, subtle differences
were found in the two FSI simulations. In the tubular model both
leaflets were displaced to the centre of the orifice during closure,
which resulted in the posterior leaflet making contact with the cen-
tre of the anterior leaflet. With the further application of pressure
the point of coaptation then moved towards the anterior leaflet tip.
In the ventricular model, the posterior leaflet sustains a smaller
displacement and the anterior leaflet contacts the posterior leaflet
close to the tip of the anterior leaflet and with the application of
further pressure no further displacement occurs.

Variation in the GOA in both FSI models during the D1 and D2
phases were found to be marginally smaller than the structural
model, with the ventricular model larger than the tubular model
(see Fig. 7). During the S phase the structural model presented a
smaller GOA than both FSI models, with all models following the
same trend. However the complete closure of the valve in the FSI
models is hampered by the fluid element gap, as previously high-
lighted in Fig. 5.

In Figs. 8–10 the differences in fluid dynamics between the FSI
models have been compared. In the D1 phase, the valve begins
in an open position and flow passes through the valvular orifice
into the ventricular chamber (Fig. 8). In the tubular model the flow
is directed to the posterior side by the anterior leaflet, but in the
ventricular model the flow bends round the bottom of the ven-
tricular volume towards the left ventricular outtract. Although the
maximum velocity of the core of the fluid is similar between the
FSI models, the extent of the jet is significantly smaller in ven-
tricular model as the fluid more restricted than in the tubular
model.

Following this first filling phase is the S phase during which the
direction of fluid flow reverses and closes the valve. The motion
of the valve during closure generates a dynamic regurgitant fluid
jet in both FSI models. From measuring the velocity of the fluid
nodes lying in the valvular plane of the fluid volumes, the maximum
velocity was found to occur at approximately the same time but the
magnitude in the tubular model was found to be approximately
50% greater than that of the ventricular model (Table 5), which
correlates with the higher transvalvular flow velocities as shown
in Fig. 8. Comparison of the filling velocity compares well to values
described in the literature of approximately 80 cm s−1 [15].

After the S phase comes the D2 phase, during which the valve
reopens and flow passes from the atrium to the ventricle. As the
valve opens a fluid jet forms, generating vorticity in the ventricular
chamber of the fluid volume. Due to the faster transvalvular flow,
the maximum value of the vorticity was found to be greater in the
tubular model than the ventricular model (see Table 6). However
the vorticity of the flow was found to have a larger extent in the
ventricular fluid volume than the tubular volume, as highlighted in
the particle traces of during reopening of the valve in Fig. 10.

Analysis of the two fluid volumes used in the FSI simulations has
shown that the valvular dynamics, in terms of the nodal configura-
tion at closure and the nodal velocities during opening and closing,
are comparable between the FSI models although differences were
noted in the coaptation dynamics. The effect on the coupled fluid
dynamics in the fluid volumes were found to generate higher veloc-
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ity flow in the tubular volume during opening and closing, along
with differences in the fluid vorticity during reopening.

4.3. Limitations

The valvular model used in this work has been useful in
analysing the differences between the structural and FSI modelling
techniques, but it has limitations such as the uniform thickness and
the linear elastic behaviour of the valve model. Although the ante-
rior cusp and the central posterior cusp coapt successfully, the valve
does not fully close in the commissural areas. Due to the expensive
computational time required, the FSI simulations presented here
have only been performed for a single cycle.

The fluid volumes used to represent the left atrium and ventricle
have been sized using realistic volumetric measurements, but are
non-physiological in that the boundaries are modelled as rigid and
static; the contractility of the LV chamber and the papillary muscles
have been neglected.

However the models incorporate aspects which have not been
previously examined in heart valve modelling and offer a qualita-
tive description of the valve behaviour under different operative
conditions. The same modelling techniques can also be applied to
tissue [2] and polymeric [4] valves which also undergo large defor-
mation in response to fluid loads.

5. Conclusion

Here the difference between ‘dry’ structural models and ‘wet’
fluid–structure interaction models have been presented in two
separate simulations, one simulating closure only and the other
simulating the full cardiac cycle. From the closure simulation it has
been shown that the structural model is similar to the FSI models in
terms of the predicted stresses but not the stress magnitude or the
valvular configuration. Although there are differences between the
models, the numerical complexity of a FSI simulations highlights
the suitability of structural simulations for the modelling of static
configurations such as closed valves.

In the cardiac cycle simulation the coupled dynamics of the
structure and the fluid have been examined. It was found that
the behaviour of the valve varied significantly between the struc-
tural and FSI models due to the uniform pressure distribution in
the structural model; the dynamics of the valve in the two fluid
volumes were found to be similar, with subtle difference in the
coaptation of the valve. Significant differences in the fluid domains
of the FSI models were noted, with the tubular model exhibited
faster fluid velocity during both opening and closing of the valve
and a reduced fluid vorticity when compared to the ventricular
model.

In conclusion, structural heart valve models are more reliable for
simulation of static events, but in order to accurately simulate full
dynamic behaviour FSI models are required. This dynamic motion
is essential in the simulation of valvular repairs, such as the edge-
to-edge technique, where the valvular dynamics are affected by

reduction of the effective valvular orifice and restricted motion of
the leaflets themselves. Also, as the mitral valve regulates the flow
in the heart, FSI models simulating normal and pathological states
(such as valvular stenosis where valvular motion is restricted)
are important, as they may allow qualification on the role valve
motion has on the flow rate and the effect on the circulatory
system.
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The effect of functional mitral regurgitation has been investigated in an anatomically sized, fluid–

structure interaction mitral valve model, where simulated correction has been performed by applying:

(1) edge-to-edge repair with annuloplasty and (2) edge-to-edge repair only. Initially defined in an open

unstressed/corrected configuration, fluid–structure interaction simulations of diastole have been

performed in a rigid ventricular volume. Comparison of the maximum principal stresses (during

diastole) in the normal and repaired models has shown that the magnitude of stress in the repaired

scenarios is � 200% greater. The combined edge-to-edge and annuloplasty procedure was found to

spread the induced stresses across the free margin of the leaflets, whereas without annuloplasty a

localised stress concentration in the region of the suture was observed. Fluid flow downstream of the

corrected configurations was able to achieve the same magnitude as in the normal case, although the

flow rate was impaired. The maximum flow rate was found to be reduced by 44–50% with the peak flow

rate shifted from the end of the diastole in the normal case to the start in the repaired cases.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The most common dysfunction of the mitral valve (MV) is
mitral valve regurgitation (MVR) which accounts for � 70% of
native MV dysfunctions (Iung et al., 2003). In MVR abnormal
amounts of retrograde flow enter the atrial chamber increasing
the haemodynamic load in the left heart, a factor which can lead
to cardiac related pathologies such as ventricular and atrial
dilation, hypertrophy and atrial fibrillation (Verma and Mesana,
2009). The etiologies of MVR can be divided between structural
(primary) and functional (secondary) dysfunctions. Structural
dysfunctions are caused by factors which affect the tissue of the
valve, resulting in a loss of biomechanical strength (i.e. myxoma-
tous mitral tissue degeneration). Functional dysfunctions result
from indirect factors which do not affect the tissue, but impact
the function of the valvular subcomponents (i.e. annular dilation
or papillary muscle displacement) (Alfieri and Bonis, 2010).
Correction of regurgitation is performed by repairing existing
valve anatomy or replacement by prosthetic substitute. Repair is
preferred if possible as mortality rates are reduced (2.0% against
6.1% for replacement) and other related complications such as
thromboses are minimised (Anyanwu et al., 2010).

1.1. Mitral valve repair

Using the existing anatomy, MV repair attempts to improve
compromised valvular function. The most common approach is
annuloplasty, in which a prosthetic ring is implanted to reshape the
annulus geometry to a functional state. A range of different options
exist which include rigid/semi-rigid or flexible devices, with closed or
partial ring designs.

Another repair method is the edge-to-edge repair (ETER)
technique designed by Alfieri (see Alfieri and Bonis, 2010). This
technique rectifies prolapse through restoring coaptation by
joining the prolapsing segment(s) to the opposing leaflets. By
repairing the existing valve structure the ETER reduces the
severity of the regurgitation during systole, improving factors
such as the ejection fraction (Kinnaird et al., 2003). However, the
ETER reduces both the geometric and effective orifice areas of the
valve during diastole, altering the normal stress state of the valve
and fluid dynamics during diastolic filling.

Traditionally the ETER is performed via a midline sternotomy
and in conjunction with annuloplasty, a factor which has had
positive clinical results in particular when annular function is
compromised (Alfieri and Bonis, 2010; Maisano et al., 2003).
Recently less invasive approaches have been pioneered whereby
the ETER repair is performed using a clip, rather than sutures.
Delivered via percutaneous access through the femoral venous
transseptal path, this clip consists of two metallic arms which grip
and hold the prolapsing segments of the leaflets together as the
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heart beats (Feldman et al., 2009). Less invasive as open access to
the heart is no longer required, these methods do not allow the
ETER to be supplemented with an annuloplasty ring.

1.2. Finite element models

Although imaging techniques allow non-invasive measurement
and visualisation of valve deformation and haemodynamic para-
meters in normal and diseased states (Veronesi et al., 2009), they
cannot provide functional information on the stress state of the valve.
In order to extract information on biomechanical function, the
support of numerical simulations is essential. The application of
numerical methods to heart valves is complicated by the nature of
the problem, as throughout the cardiac cycle the heart valves are
immersed in blood and subjected to non-uniform haemodynamics
loads. Modelling of this problem requires an approach that is able to
handle both the large deformation of a non-linear elastic structure
and the coupling of fluid and structural domains.

Various models have been reported in the literature and can be
broadly divided into structural-only, fluid–structure interaction
(FSI) and fluid-only models. Although structural and FSI models of
the native MV exist (Votta et al., 2008; Kunzelman et al., 2007),
the ETER has been previously modelled using structural-only
(Avanzini, 2008; Dal Pan et al., 2005; Votta et al., 2002) or
valveless fluid-only approaches (Redaelli et al., 2001), both of
which have limitations. Structural-only models assume the hae-
modynamic pressure load is uniform over the surface of the valve,
a factor which has been previously shown to affect valve
dynamics (Lau et al., 2010). Fluid-only models yield the non-
uniform pressure field across the valve, yet do not account for the
deformation of the valve which in turn regulates the flow through
the orifice; only with FSI are both of these factors addressed.

Structural-only simulations of the ETER have examined the
increase in stresses during diastole and the dual effect of stitch
location and length. Votta et al. (2002) report that during diastole
a repaired valve experiences principal stresses comparable to that
of systole, whereas Dal Pan et al. (2005) and Avanzini (2008) have
shown that the lateral positioning and length of the suture both
have a positive effect in reducing the magnitude of stress
induced; both models also show that the uncorrected dilation of
the annulus in a simulated dysfunctional state result in a higher
value of stress during diastole.

Fluid-only models (Redaelli et al., 2001) have studied the effect
of the ETER by defining a fluid volume with single/double orifice/s
representing the corrected valve geometry following ETER. The
effects of a single orifice (uncorrected), double orifice (central
leaflet correction) and an asymmetric single orifice (commissural
leaflet correction) have been examined, with results indicating
that the key factor affecting the transvalvular pressure drop is the
total cross-sectional area of the repaired valve.

This study presents for the first time, FSI models of the ETER.
Using non-linear material models to represent the MV, simulation of
the coupled function of the valve and blood has been performed in
normal and dysfunctional states representative of functional MVR.
Repair has been performed with two different approaches and the
resulting variation in stress states and fluid dynamics has been
analysed and compared to the uncorrected valve.

2. Methods

The model described here was implemented in the explicit finite element code LS-

DYNA (Hallquist, 2006; LS-DYNA Keyword User’s Manual, 2007), as it provides the

facilities to model both the large deformations of the valve structure and the FSI of the

blood with the valve. All simulations and post-processing were performed on a Intel

Xeon 2.66 GHz workstation with LS-DYNA 971 Release 4.2.1, LS-PREPOST 3.1, EnSight

9.1.2 and MATLAB R2010b.

2.1. Normal and dysfunctional states

Valve function has been examined in normal and dysfunctional states,

repaired with the ETER, with/without annuloplasty. Functional MVR has been

simulated by dilating the annulus and assuming the biomechanical properties of

both the leaflets and chordae remain same between the normal and dysfunctional

states, a factor traditionally reflective of functional MVR.

In vivo echocardiographic comparison of human patients with both normal and

regurgitant MV function has shown that the annulus of the valve is more dilated in this

dysfunctional state. Under normal conditions the annulus is a highly dynamic

structure, varying in eccentricity1 from 0.57 at mid-systole to 0.42 in mid-diastole. In

dysfunctional states the annulus of the valve is less dynamic, varying from 0.50 in mid-

systole to 0.42 in mid-diastole (Kaplan et al., 2000).

Using this data (Kaplan et al., 2000), a dysfunctional state was modelled by

dilation of the valvular orifice in the anteropostero axis. Following this, correction

was simulated in two separate scenarios in order to examine the difference

between traditional and endovascular techniques for the ETER. Comparison of

these states was performed against an undilated and uncorrected model, which is

referred to as the normal state.

2.2. Material model

The biomechanical response of the leaflets has been defined using the biaxial

stress–strain experiments performed by May-Newman and Yin (1995), the reported

stress–strain curves have been discretised by selecting key data points as shown in

Fig. 1 and input into the material model MAT_NONLINEAR_ORTHOTROPIC in LS-DYNA

(LS-DYNA Keyword User’s Manual, 2007). As the MV leaflets are modelled as

membranes, reduced integration across the shell thickness was performed. For further

details regarding this material model, refer to Appendix A.1 (Kunzelman et al., 1993;

Benson, 1992; Batchelor, 1967).

The chordae are modelled as beams which generates force solely under

tension. The non-linear mechanical properties of the chordae are defined from

experimental data (Kunzelman and Cochran, 1990) and were input into the

material model MAT_CABLE_DISCRETE_BEAM (LS-DYNA Keyword User’s Manual,

2007).

2.3. Mitral valve model

The MV geometry is based upon anatomical measurements reported from

in/ex vivo sources. The valve has been modelled as symmetric about the

anteropostero axis, allowing the computational simplification of only simulating

half the MV. The density ðrÞ of all valvular parts has been taken as 1 g cm�3.

Fig. 1. Stress–strain curves used in the material model of the valve leaflets,

digitised experimental data taken from May-Newman and Yin (1995).

1 Eccentricity (e) is defined as e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2
p

=a, where a and b are the major and

minor axes of the orifice.

K.D. Lau et al. / Journal of Biomechanics 44 (2011) 2409–24172410



The base of the model, the normal (undilated) annulus was defined as a static and

planar D-shaped orifice with an anteropostero and commissural diameters of 22.5 and

30 mm, respectively (Fig. 2). Using the centre of the anterior leaflet as a reference

point, the annular extent of the valvular cusps was defined by scaling reported data

(Sakai et al., 1999) to the D-shaped orifice. The perimeter of the annulus and its

enclosed area in the normal state are 8.67 cm and 5.54 cm2, respectively.

Extending from the annulus are the cusps of the leaflets, represented here by

the larger anterior and three smaller posterior cusps (Fig. 2). Sized from

anatomical measurements (Kunzelman et al., 1994), the areas formed by the

leaflets have been meshed using rectangular shell elements. Measurements of the

leaflet thickness show regional differences between leaflets (May-Newman and

Yin, 1995), however, no detailed description of this variation exists in the

literature. This variation in thickness has been simplified by modelled both

leaflets as uniformly equal to 1 mm. In total the mesh consisted of 4000

Belytschko-Lin-Tsay shell elements, the resolution was determined to be sufficient

by performing a mesh independence analysis. For further details regarding the

shell element used, refer to Appendix A.2.

During valve closure inversion of the valve is prevented by the chordae

tendineae (CT), structures which are classified by the anatomical position where

they attach to the leaflet. Here only the marginal and basal CT have been included,

which respectively support the free edges of the leaflets and the base of the valve

near the annulus. Anatomical observations indicate that the number and distribu-

tion of CT vary significantly, for example the number of marginal chordae attached

to the anterior leaflet can range from 5 to 13 (Lam et al., 1970). In this model, the

CT distribution was modified to achieve physiological coaptation under closure

conditions. In total, the CT consist of 1666 discrete beam/cable elements. The

cross-sectional area of the marginal and basal chordae has been taken as 0.45 and

1.15 mm2, respectively, as reported in Kunzelman et al. (2007).

2.4. Dysfunctional model

Here a state of functional MVR has been modelled where dysfunction is

generated from a change in annular dimension, whilst the function of the leaflets

and chordae has been assumed to remain normal. Utilising the same material

model described previously, the MV model was dilated in the anteropostero axis

by a factor of 1.11 decreasing the eccentricity from 0.66 to 0.56, consistent

with the average reduction in eccentricity of 15.5% during diastole as reported by

Kaplan et al. (2000) (see Fig. 2). This dilation increased the leaflet surface area by

3.7%, annulus length to 8.96 cm and MV orifice area to 6.04 cm2. This modified

geometry is the reference geometry for the dysfunctional state and was defined as

stress-free.

The ETER was simulated by first connecting the central region of the free

margin, over a width of 2 mm on both anterior and posterior leaflets, with thermal

beam elements. Following this, application of a negative thermal load (a linear

ramp of �5 1C over 100 ms) was used to contract these beams, connecting the two

edges together completing the simulation of the ETER (Fig. 2). This single Hughes–

Liu beam was defined with a density of 1 g cm�3, an elastic modulus of 1 MPa and

a thermal coefficient of expansion 1 1C�1. The values of these parameters were set

to reduce the length of the beam connecting both leaflet edges by � 99%, ensuring

the connection of the two leaflet portions.

2.5. Valve repair

The ETER was examined using two different approaches: the standard surgical

approach with supplementary annuloplasty and the endovascular approach that

Fig. 2. Finite element model of the MV: (a) 3D view with finite element mesh superimposed, (b) front view, (c) top down view (normal) and (d) top down view

(dysfunctional). All units in mm.
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allows only the ETER (Fig. 3). Both cases are first defined in a dysfunctional state

through valvular dilation. In the case of simultaneous ETER and annuloplasty, the

nodes of the annulus are also displaced back to the D-shape of the normal annulus,

mimicking the effect of a rigid annuloplasty ring. For the ETER-only case, only the

thermal beams are contracted and the annulus remains dilated.

Contraction of the beam elements was performed with structural-only

simulations for computational efficiency. The dampening effect of the fluid was

approximated by using a global nodal damping factor of 0.9965, based on previous

experimental results (Burriesci et al., 1999). The final configuration (geometry and

stress state) was used as the initial state for the corresponding FSI simulations,

prior to which the thermal beam elements were switched from deformable to

rigid objects.

2.6. Fluid–structure interaction model

FSI was performed by immersing the valve model into an overlapping U-shaped

fluid domain, volumetrically sized with left ventricular and atrial volumes of 85

and 35 ml, respectively (Fig. 4) (Levick, 2003). Although the ventricle has been

defined using an un-physiologically rigid volume, previous FSI analysis has shown

that differences in valvular dynamics exists between straight and more physio-

logical U-shaped geometries (Lau et al., 2010). Using a structured mesh, the

volume was designed to include the shape of the mitral and aortic orifices (Fig. 4).

The final meshed geometry of the fluid volume with the normal annulus consisted

of 20430 LS-DYNA 8-node brick elements. In the dilated geometry the larger

orifice increased the number of fluid elements, resulting in a fluid volume with

30,618 elements. Parameters have been chosen to reflect the higher density and

dynamic viscosity of blood, which has been modelled as a Newtonian fluid

(Table 1). Mesh independence was verified on a series of fluid-only analyses by

applying the pressure boundary condition of the full simulation up to maximum

value of pressure (Fig. 5). Coupling of the fluid/structure was performed using a

Initial configuration

Dilate valve by n%

ETER ETER & AP

FSI

Fig. 3. Valve correction simulation flow.

Fig. 4. (a) Fluid volume geometry in which the MV model is immersed into (highlighted in red), (b) top down view of the normal mesh with the valvular orifices

highlighted in white, (c) top down view of the dilated mitral annulus model and (d) side view of the normal fluid volume mesh. The volume of the atrial and ventricular

chambers were sized to 35 and 85 ml, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 5. Transvalvular pressure difference between left atrium and ventricle during

diastole. The zero pressure difference marks the pressure cross-over points in the

cardiac cycle, indicating the start and end of diastole. Average transvalvular

pressure was 0.52 kPa (3.9 mmHg). Data after Levick (2003).

Table 1
Fluid properties.

Parameter Value

Density ðrÞ 1:080 g cm�3

Dynamic viscosity ðnÞ 0:0039 Pa s

Bulk modulus (K) 22 GPa
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penalty coupling method. For further details regarding this and other aspects of

the fluid–structure interaction model, refer to Appendix A.3.

2.7. Boundary conditions

Previous transient FSI simulations of a single cardiac cycle ð � 1000 msÞ with

the available computer equipment have required approximately 100 h of compu-

ter time (Lau et al., 2010). Here the focus is in the diastolic component of the

cardiac cycle, thus these simulations have been limited to that portion only.

Starting with the valve in an open configuration, the ETER was first performed

(in dysfunctional states) and immediately followed by the application of a

diastolic pressure gradient simulating fluid flow through the valve (Fig. 5).

The pressure curve used in these models was described using a 6th order Fourier

series2 (Eq. (1)) where the units of pressure and time are mmHg and ms,

respectively:

DPðtÞ ¼ a0þ
X6

n ¼ 1

an cosðnwtÞþ
X6

n ¼ 1

bn sinðnwtÞ ð1Þ

3. Results

3.1. Valve correction

ETER has been simulated by central correction of the anterior
and posterior leaflets with and without annular displacement.
The deformation of the valve and the maximum of the principal
stresses from this deformation are shown in Fig. 6.

3.2. Valve dynamics

The values of the maximum principal stresses induced in the
normal and two dysfunctional models are listed in Table 2. The
deformation and stress distribution in each model at its max-
imum principal stress is visualised in Fig. 7.

3.3. Fluid dynamics

The ETER reduces the flow rate through the orifice throughout
the diastolic cycle in both corrected configurations (Fig. 8).
Comparison of the velocity magnitude downstream of the MV is
visualised using the plane located in the centre of the valve,
parallel to the anteropostero axis (Fig. 9). Fluid motion through
the orifice was also analysed with particle tracing (Fig. 10).

4. Discussion

4.1. Valve dynamics

During diastole the stresses in the uncorrected valve are small,
however, the effect of the ETER increases the maximum principal
stress by � 200% (Table 2). The maximum diastolic principal
stresses in the repaired valves equate to 65% (ETER with annulo-
plasty) and 68% (ETER only) of the maximum principal stress
observed in the same model during systolic closure only
ð � 300 kPaÞ. Using a linear elastic orthotropic model, Votta et al.
(2002) performed simulations of the ETER, showing the max-
imum diastolic stress in a repaired state is comparable to the
maximum systolic stress. Similar analysis by Dal Pan et al. (2005)
reports the maximum diastolic stress as 71% of the systolic stress.
The inconsistencies of these values can be attributed to the fact
that structural models are not adequate to model diastole which
is a transient event, where the valve is in dynamic motion and the
pressure load is non-uniform over the MV surface.

Fig. 6. Simulation of the ETER correction in the dilated MV model; (a) maximum principal stress distribution in its final state, t ¼ t=tmax ¼ 1, without (left) and with (right)

annuloplasty; (b) the corresponding deformation at t ¼ t=tmax ¼ 0=3, 1/3 and 2/3, without (left) and with (right) annuloplasty.

Table 2
Maximum principal stress in normal and repaired

models.

Model Max. principal stress (kPa)

Normal 69.7

ETER and AP 195.8

ETER only 205.5

2 Fourier coefficients: a0 ¼�6:299, a1 ¼�13:21, a2 ¼ 0:7083, a3 ¼ 8:703,

a4 ¼ 7:035, a5 ¼ 2:608, a6 ¼ 0:2057, b1 ¼ 13:55, b2 ¼ 16:41, b3 ¼ 8:148,

b4 ¼ 0:2259, b5 ¼�1:848, b6 ¼�1:006 and w¼ 0:01185.

K.D. Lau et al. / Journal of Biomechanics 44 (2011) 2409–2417 2413



Although the magnitude of stresses is similar in both ETER
cases, the distribution of stress differs. Comparison of stress at
the local maximum of each model shows that with the ETER-
only repair a concentrated stress distribution is located at the
suture, compared to the ETER with annuloplasty case where the
stresses are redistributed along the free margin of leaflets (Fig. 7).
This reduction in stress between corrected and uncorrected

annular dilation has been also highlighted in previous ETER
simulations (Votta et al., 2002; Dal Pan et al., 2005).

Clinical results have shown that the repair of the valve without
the application of an annuloplasty ring has suboptimal performance
(Alfieri and Bonis, 2010). Although the etiologies of heart valve
disease are numerous, it has been possible to explore in detail the
effect of one factor here in this model: annular dilation. In this case
it has been shown that valve correction without the application of
annuloplasty induces a higher maximum stress and a more con-
centrated stress pattern. This has particular impact upon percuta-
neous techniques whereby the ETER is the only repair.

4.2. Fluid dynamics

Comparison of the flow rate shows that the ETER impairs the
MV’s ability to facilitate rapid fluid transport (Fig. 8). The initial flow
rate between the normal and repaired valves is comparative over
the initial 20 ms of the diastolic simulations. Beyond this point, the
difference in magnitude rises to over 100 cm3 s�1 as the repaired
valves are unable to deform freely and increase the flow rate. This is
highlighted by the location of the maximum flow rate (Fig. 8) which
occurs at � 360 ms in the normal model ð13:4 l min�1

Þ and
� 40 ms in the two repaired valves (7.5 and 6:8 l min�1 for the
ETER only and the ETER with annuloplasty) (Table 3).

Downstream of the valve, the maximum magnitude of the
fluid velocity is similar in all three models (Fig. 9). Approximately
0:8 m s�1, this value corresponds to expected physiological values
(Lau et al., 2010). Particle traces at the maximum velocity point in
the cycle highlight that the fluid field in the corrected cases
contains large areas of rotation (Fig. 10).

4.3. Limitations

This study only analyses the effect of a centrally located suture,
lateral suture positions have not been examined. However, the

Fig. 7. Valve deformation and maximum principal stress distribution at the local maximum of the principal stress in each model as viewed from the ventricular side of the

valve in the (a) normal valve (t¼42 ms), (b) ETER valve subjected to annuloplasty (t¼340 ms) and (c) ETER only repaired valve (t¼101 ms).

Fig. 8. Flow rate through mitral orifice in the normal valve, ETER with annulo-

plasty valve and ETER only valve.
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central suture corresponds to the most severe scenario in terms of
the leaflet stress distribution as reported in previous structural
analyses of the ETER technique (Avanzini, 2008; Dal Pan et al.,
2005; Votta et al., 2002).

The annulus of the valve was modelled as a static planar object,
neglecting its dynamic motion, which adopts a ‘saddle’ shape in the
systolic phase (Veronesi et al., 2009). This has been shown to reduce
stress concentrations during valve closure (Salgo et al., 2002).

Fig. 9. Fluid velocity distribution through a plane centred in the valve model in the (a) normal valve, (b) ETER and AP corrected valve and (c) ETER only valve. All figures

visualised at t¼365 ms, the point at which the global maximum fluid velocity was observed.

Fig. 10. Particle traces of the fluid field taken at t¼365 ms. Particles were seeded from a plane located 10 mm above the valve orifice in the (a) normal valve, (b) ETER valve

with annuloplasty and (c) ETER only valve.

Table 3
Maximum value of the flow rates in the normal, ETER valve subjected to

annuloplasty and ETER only valve.

Model Flow rate ðcm3 s�1Þ Flow rate ðl min�1
Þ

Normal 224 13.4

ETER and AP 114 6.8

ETER only 125 7.5
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However, the focus of this study was the diastolic peak where the
role of the annulus dynamics in the reduction of stress is reduced.

As the valve was defined in its unstressed open configuration
at the beginning of the diastole, and the motion of the ventricular
wall was neglected, the results obtained during the initial phases
of opening are approximated. Analysis of the stress state of the
MV has been performed when the valve is fully opened, when the
effects of ventricular dynamics are reduced and the maximum
principal stresses are constant. Previous analysis (Lau et al., 2010)
of a single cardiac cycle (open–closed–open) has shown that
during the second open period, when the valve is fully open, the
maximum principal stresses are constant.

The biomechanical response of the functionally regurgitant
valve was assumed to be identical to the normal valve. However,
echocardiographic studies by Chaput et al. (2008) have shown
that FMR results in increased MV leaflet area/volume, a change
that will directly affect the biomechanical response of the valve.
However, no data exists which has characterised the mechanical
behaviour of MV tissue in this state.

The fluid volume has several simplifications regarding its
geometry and dynamics of its boundaries. Here the ventricular
chamber was designed as a rigid U-shaped volume with an open
aortic position, factors which are all unphysiological. Also in
functional regurgitant states the left ventricular volume is dilated,
a factor ignored here as this model of dysfunction only includes
valvular changes.

5. Conclusions

Here the functional response of the valve and fluid to a
simulated dysfunctional state and subsequent surgical repair
has been performed. Diastole was simulated using a FSI method
with non-linear orthotropic material models used to described
the mechanical response of the leaflets and chordae. Simulation of
dysfunction has been performed by dilating the valve in the
anteropostero axis to match the eccentricities reported in vivo in
cases of functional MVR and subsequently corrected in two
separate simulations: ETER with and without annuloplasty.

The results of the FSI simulations have shown that the
maximum principal stresses induced in both corrected cases are
200% larger in a repaired valve compared to a normal valve.
Although the maximum of both corrected scenarios are similar
in magnitude, the distribution of the stress between the two
cases differ significantly, with high stress concentrations in the
dilated model with ETER only. Typically stresses in the MV in
this portion of the cardiac cycle are low. Stress reduction will
therefore be beneficial in minimising the detrimental effects of
the ETER.

The fluid dynamics of filling are also affected, with highly
directed flow generated by the ETER. Similar magnitudes of the
velocity are observed downstream of the valve, however,
the repaired valves exhibited diminished flow rates throughout
the diastolic cycle, such that the peak flow rate was shifted from
the end of the simulation to the start of diastole.
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