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Abstract 

 Blood velocity and pressure fields in large arteries are greatly influenced by 

the deformability of the vessel. Moreover, wave propagation phenomena in the 

cardiovascular system can only be described considering wall deformability since 

blood is usually described as an incompressible fluid. However, computational 

methods for simulating blood flow in three-dimensional models of arteries have 

either considered a rigid wall assumption for the vessel or significantly simplified 

or reduced geometries when modeling blood flow in deformable arteries. 

Computing blood flow in deformable domains using standard techniques like the 

ALE method remains a formidable problem for large, realistic anatomic and 

physiologic models of the cardiovascular system.  

 We have developed a new method termed the Coupled-Momentum Method 

for Fluid-Solid Interaction to simulate blood flow in three-dimensional deformable 

models of arteries. In this method, the effect of the vessel wall boundary is added 

in a monolithic way to the fluid equations using a shear-enhanced membrane 

model for the wall, resulting in a remarkably robust scheme. We present here the 

mathematical formulation of the method and discuss issues related to the fluid-
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solid coupling, membrane formulation, time integration method, and boundary 

and initial conditions.  

 We have verified the method by comparing it against Womersley’s analytical 

solution for pulsatile flow in a straight cylindrical elastic vessel, and have 

obtained excellent agreement between the numerical and analytical solutions. 

 The method was then applied to a number of different geometries, ranging 

from simple, idealized models to large, patient-specific models with over 1 million 

element finite element meshes. The simple geometries have provided a clear 

framework to illustrate concepts like wave propagation phenomena, impact of 

boundary conditions, etc. The patient-specific models have demonstrated the 

potential of the method to be applied to surgical-planning and disease-research 

problems in a clinically-relevant timeframe. 

 This research shows great promise for the application of computational 

methods representing fluid-solid interactions to clinical applications. We have 

suggested future directions to expand the work developed in this thesis to obtain 

even more realistic models of blood flow in arteries, while still maintaining an 

emphasis on computational efficiency so essential to clinical applications. 
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Chapter 1 

Chapter 1. Introduction 

1.1 Motivation 

 Congenital and acquired cardiovascular diseases represent one of the most 

important causes of morbidity and mortality in the world. Congenital heart 

disease affects more than 33,000 children per year in the United States alone and 

is the leading cause of death from birth defects during infancy. Among the 

acquired cardiovascular diseases, atherosclerosis is the most common 

manifestation. This disease, often characterized by arterial narrowing and 

reductions in blood flow, accounts for 75% of all cardiovascular disease-related 

deaths in the United States [1]. While the risk factors of this disease such as 

nicotine, high cholesterol and familial history are systemic (i.e., they are present 
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in the entire cardiovascular system), the manifestations (typically in the form of 

plaque deposits) are localized in areas of complex flow like the coronary, carotid, 

abdominal and femoral arteries. Hemodynamic quantities such as blood velocity, 

pressure and shear stress play a very important role in the localization of disease 

and in the efficacy of treatments [2,3,4,5]. For both congenital and acquired 

cardiovascular diseases, a deep understanding of the altered blood flow conditions 

can enable the optimization of interventions employed to treat these conditions. 

 In recent years, computational techniques have been used widely by 

researchers seeking to simulate blood flow in three-dimensional models of arteries. 

Applications include disease research where fluid mechanical conditions are 

correlated to regions prone to atherosclerosis [6,7,8], medical device design where 

the interactions between a device and the blood stream are modeled [9,10,11] 

and, more recently, surgical planning [12,13,14,15].  

 However, the tools and methods used to model blood flow in the 

cardiovascular system are in many cases still too crude and new developments are 

required in order to improve the accuracy and faithfulness of the results. Very 

often, classic engineering fluid mechanics formulations are used to approximate 

the behavior of blood flow in the cardiovascular system, without paying enough 

attention to a number of factors that drastically affect the faithfulness of the 

simulations: 
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1. Model construction from medical image data. This component of the 

simulation process determines the geometry used in the computation, and 

it is therefore very important to reproduce as closely as possible the actual 

anatomy of the patient. 

2. Boundary conditions. Prescribing adequate inflow and outflow conditions 

enables computations at physiologic levels of pressure and with realistic 

flow division between the different vascular branches.   

3. Fluid-Solid Interactions between the blood and the vessel wall. The impact 

of vessel wall deformability on the wave propagation phenomena present 

in the blood flow, as well as on other quantities, such as pressure pulse, 

flow distribution between systole and diastole, wall shear stress, dynamic 

pressure, etc. makes it a fundamental aspect to be considered in the 

simulation process. 

 The work developed in this thesis in focused on this latter factor. A new 

formulation to model blood flow in deformable models of arteries is presented, 

implemented, and applied to various problems, including large patient-specific 

models of the vasculature, with applications to disease research and simulation-

based medical planning. 
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1.2 The Importance of Including Wall Deformability when 

Modeling Blood Flow in Arteries 

 Most computational techniques applied to model blood flow in three-

dimensional, patient-specific models of arteries have either examined only the 

velocity field (not the pressure field), treating the vessel walls of patient-specific 

models as rigid [16,17,18,19,20], or have considered significantly simplified or 

reduced geometries of deformable wall models [21,22]. The rigid-wall 

approximation is made in large part because of the difficulty of solving the 

coupled blood flow / vessel deformation problem and is justified by the 

observation that, under normal conditions, wall deformability does not 

significantly alter the velocity field [21]. However, this observation was made for 

arteries where wall motion is small and may not be valid for arteries where 

deformations are larger (e.g., the thoracic aorta). Perhaps most importantly, the 

assumption of rigid vessel walls precludes wave propagation phenomena (see 

Figure 1-1), fundamentally changes the character of the resultant solutions, and 

results in difficulties in coupling three-dimensional domains with domains 

described using one-dimensional wave propagation methods [23,24]. 

 Therefore, it is clear that in order to accurately represent some of the 

fundamental characteristics of blood flow in the cardiovascular system, vessel 



THE IMPORTANCE OF INCLUDING WALL DEFORMABILITY WHEN MODELING BLOOD 

FLOW IN ARTERIES 
5 

 

 

wall deformability must be taken into account in the mathematical formulation 

of the problem. 

 

 

Figure 1-1: Changes in blood pressure pulse and blood pressure wave speed due to variations in the 

compliance and geometry of the blood vessels. Modified from [25]. c represents the speed of the pressure 

and flow waves in the arteries. 
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1.3 Models of the Cardiovascular System 

 Vessel wall deformability can be easily included when modeling the 

cardiovascular system using reduced-order methods like the Lumped Parameter 

Method [26,27,28] or One-Dimensional Formulations (linear and non-linear) 

([29,30,31,32]). However, these techniques cannot provide the level of information 

about many of the different variables and their derived quantities (like wall shear 

stress, or wall tensile stress) that are of interest to vascular biologists and 

physicians. These variables can only be obtained using three-dimensional 

formulations where patient-specific models of the geometry of the patient can be 

generated and the flow fields and derived quantities can be obtained. However, 

the increase in computational cost of three-dimensional techniques is very 

significant compared to that of reduced-order methods, especially when the 

combined problem of blood flow and vessel wall deformation is considered.   

 One of the better-known methods for including wall deformability in three-

dimensional geometric models is the ALE (Arbitrarily Lagrangian - Eulerian) 

formulation for fluid-structure interaction problems [33,34]. Exemplary work 

describing the development and application of ALE methods includes that of 

Tezduyar ([35,36]) and Farhat ([37,38]). Significant progress has been made in 

recent years in solving blood flow problems in deformable domains using ALE 

methods (see, e.g.,[39,40,41,42]). A theoretical analysis of this method can be 
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found in [43] and [44]. However, ALE formulations are computationally expensive 

when considering large models of the vasculature and often not very robust since 

they necessitate the continual updating of the geometry of the fluid and 

structural elements. Other formulations that account for wall deformability are 

based on the Immersed Boundary Method [45,46] or on transpiration techniques 

based on linearization principles [47,48].  

 Modeling the three-dimensional blood flow in compliant arteries, which are 

tethered to and supported by surrounding tissue and organs, is extremely 

challenging for a number of additional reasons: geometry acquisition, accurate 

constitutive description of the behavior of the tissue, and outflow boundary 

conditions are only a few examples. Application of fluid-structure interaction 

methods in simulation-based medical planning is additionally demanding in that 

multiple surgical interventions need to be modeled, solved, analyzed, and 

compared in a clinically relevant time-frame (hours).  Simpler methods for 

incorporating wall motion are essential for these applications.  

 

 

 

 



PROPOSED METHODOLOGY 8 

 

 

1.4 Proposed Methodology 

 In this thesis, we present a new formulation for modeling blood flow in 

deformable arteries called the Coupled Momentum Method for Fluid-Solid 

Interaction problems (CMM-FSI).  This formulation starts from a conventional 

stabilized finite element formulation for the Navier-Stokes equations in a rigid 

domain and modifies it in such a way that the deformability of the wall domain 

surrounding the fluid is taken into account. With this approach, the effects of the 

vessel wall motion are embedded in the weak form representing the blood flow 

resulting in a single weak form for the combined problem.  As a result of this, 

only minimal changes in the stiffness matrices and residuals of the rigid wall 

finite element model are required to incorporate the effects of the wall motion.  

This approach results in a tractable, efficient and robust procedure to simulate 

fluid-structure interactions in three-dimensional models of the cardiovascular 

system. The computational effort is comparable to that of rigid wall formulations 

while at the same time it respects the essential physics and enables realistic 

simulation of wave-propagation phenomena in the arterial system as well as a 

linearized description of wall deformation.  
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1.5 Contributions 

 The main contributions of this thesis are: 

1. The development of a new mathematical formulation to model blood flow 

in deformable models of arteries. This formulation utilizes a single 

variational form for the combined blood flow/vessel wall motion problem, 

using identical degrees-of-freedom for the lateral surface of the fluid 

domain and the solid domain. A shear-enhanced membrane element for 

the vessel wall has been developed, as well as an extension of the 

generalized-  time integration algorithm. 

2. The implementation of this mathematical formulation into a pre-existing 

Stabilized Finite Element Solver for Fluids (PHASTA©[49]). 

3. The verification of the mathematical formulation by comparing it against 

the results provided by Womersley’s mathematical model of pulsatile 

blood flow in a deformable cylindrical vessel. 

4. The application of the formulation to a number of different models, 

ranging from simple idealized geometries to large, patient-specific models 

of various parts of the cardiovascular system, with particular emphasis on 

disease-research and simulation-based medical planning applications. 
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1.6 Organization of Thesis 

 The remainder of this thesis is organized in the following manner: Chapter 2 

presents some of the fundamental concepts related to the mathematics and 

physics of pulsatile flow in deformable vessels. This is done by first reviewing, in 

detail, Womersley’s deformable wall theory. Then, a brief summary of the 

equations describing general three-dimensional coupled fluid-solid interactions is 

provided. Chapter 3 presents the Finite Element formulation of the CMM-FSI. 

This includes the development of a new single variational formulation for the 

combined problem, the Finite Element model for the vessel wall and the 

adaptation of the generalized-  time integration algorithm for this formulation. 

Chapter 4 presents the verification of the CMM-FSI by comparing it against 

Womersley’s deformable wall mathematical theory. Chapter 5 presents the 

application of the method to problems of increasing complexity. The impact of 

wall deformability and outflow boundary conditions is analyzed and discussed for 

a number of these problems. The last three models of this chapter correspond to 

disease-research and simulation-based medical planning applications. Lastly, 

Chapter 6 presents conclusions and suggestions for future work. 
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Chapter 2 

Chapter 2. Mathematics and Physics of 

Pulsatile Flow in Deformable Vessels 

2.1 Introduction  

 In this chapter, we first review in detail Womersley’s deformable wall theory. 

Then, a brief summary of the equations describing general three-dimensional 

fluid-solid interactions is provided. These two topics supply the necessary 

background to the work developed in this thesis. The significance of Womersley’s 

theory can be summarized in three points: 
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1. It represents an excellent framework to understand some of the basic 

principles that govern wave propagation phenomena and blood flow 

velocity patterns in the cardiovascular system.  

2. It has provided our inspiration to derive the theory of the Coupled-

Momentum Method. As we will see in Chapter 3, we have adopted the 

same strategy used by Womersley to couple the fluid and solid equations 

together. In his work, he defined a body force for the solid equations using 

the pressure and shear stress fields of the fluid domain (see Section 2.2.2.2, 

equation(2.81)) to derive the analytical solution. We have generalized this 

approach to arbitrary geometries and flow regimes. 

3. Womersley’s theory provides the mathematical model to perform the 

verification study for the Coupled-Momentum Method performed in 

Chapter 4 of this thesis. 

 We have adopted Zamir’s book [50] as the starting point for the work 

developed in Section 2.2. 

 Womersley’s analytical solution is only applicable to axisymmetric flows in 

cylindrical, straight, long vessels; therefore, we need to resort to numerical 

formulations to solve the problem of blood flow and vessel wall deformation in 

arbitrary three-dimensional geometries. In Section 2.3, we briefly describe the 

general nonlinear partial differential equations governing flow in three-
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dimensional deformable domains. In general these problems require the 

modification of the Eulerian formulation used to represent flows in fixed grids. 

We provide a schematic description of how these problems are treated with the 

well-known Arbitrary Lagrangian-Eulerian (ALE) formulation. However, the 

computational cost of this formulation for large, patient-specific models of the 

vasculature is very high, making it expensive to use in surgical planning 

applications since in these cases multiple surgical interventions need to be 

modeled, solved, analyzed, and compared in a clinically relevant time-frame 

(hours). This justifies the need for the formulation developed in this thesis (the 

CMM-FSI method) which represents a computationally efficient alternative to 

ALE formulations.  
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2.2 Womersley Theory for Blood Flow in Elastic Tubes 

 The pumping action of the heart produces a driving force that pushes blood 

through the arterial tree. This driving force, or pressure differential, can be 

decomposed into a constant part that does not vary in time and that produces a 

steady flow forward as in Poiseuille flow, plus an oscillatory part that moves the 

blood back and forth, with zero net flow over each cardiac cycle. We can use the 

terms steady and oscillatory to refer to these two components of the flow. We can 

also decompose a given pressure gradient  k t  into the steady, sk , and 

oscillatory,  k t , components 

    s

p
k t k k t

z 


  


 (2.1) 

 
 

Figure 2-1: Decomposition of the driving force (pressure gradient) into its steady and oscillatory 

components. 
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as illustrated in Figure 2-1. 

 The simplifications to the Navier-Stokes equations that we consider in this 

chapter will be such that the resulting equations are linear. As a result, we can 

decompose flow into steady and oscillatory parts by using linear superposition.  

 It is important to note that the expressions derived in this chapter for the 

different flow variables correspond only to the oscillatory component of the total 

solution. Once the oscillatory components of the velocity field in the radial (u ) 

and longitudinal (w ) directions are obtained, we reconstruct the total solution 

by adding these components to the steady (Poiseuille) solution profile. This latter 

solution provides the longitudinal velocity sw  generated by a steady pressure 

gradient in a circular, straight vessel of radius R. Its expression is given by: 

    2 2

4
s

s

k
w r r R


   (2.2) 

Therefore, the total solution for the different flow velocity components is: 

- Longitudinal 

        2 2, , , ,
4
s

s

k
w w r w r z t r R w r z t 


      (2.3) 

- Radial 

      , , , ,su u r u r z t u r z t     (2.4) 
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 The objective of this chapter is to obtain the expressions for the oscillatory 

components of the flow velocity in the longitudinal (w ) and radial (u ) 

directions. We will also obtain expressions for the displacement of the wall in the 

longitudinal (  ) and radial (  ) directions. Note that these components will be 

purely oscillatory as well.  

 For the sake of notational simplicity, we omit the oscillatory subscript   from 

all the variables considered hereafter.  

2.2.1 Equations of Motion for the Rigid Wall Theory 

 We start by reviewing the expressions of Womersley’s rigid wall theory. The 

general mass and momentum conservation equations defining the incompressible 

Navier-Stokes equations can be greatly simplified under the following 

assumptions: 

1. Cylindrical, axisymmetric straight vessel. 

2. Constant in space (fully-developed) pressure gradient 
p

z




. 

3. Rigid walls. 

Considering this, the velocity vector v  in cylindrical coordinates is simply 

 

0

0
r

z

v

v v

v w


   
   

    
   
   

 (2.5) 
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 The continuity equation is trivially satisfied and the momentum vector 

equation reduces to the longitudinal component given by: 

 
2

2

1 1w w w p

r r r t z



 

   
  

   
 (2.6) 

where   and   represent the density and viscosity of the fluid, respectively. 

 If a complex exponential is used to represent each mode of the oscillatory 

pressure gradient, we have  

 i tp
Ae

z





 (2.7) 

where A represents the amplitude of the oscillation and   its frequency. Now, if 

we consider a separation of variables for the unknown velocity w of the form 

    , i tw r t W r e   (2.8) 

we obtain the following (complex) ordinary differential equation  

 
2

2

1dW dW i A
W

dr r dr



 
    (2.9) 

 Now, we introduce the Womersley number to simplify this equation further. 

The Womersley number is a dimensionless parameter that represents the ratio 

between oscillatory inertial forces and viscous forces: 

 R





  (2.10) 
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 Considering this, equation (2.9) can be rewritten as   

 
2 2

2 2

1dW dW i A
W

dr r dr R




    (2.11) 

 Equation (2.11) is a form of Bessel’s equation that has a known general 

solution. To obtain it, we need to perform a coordinate transformation to write 

this equation in the form of the standard Bessel equation, which is given by the 

following expression: 

  2 '' ' 2 2 0             n 0x y xy x n y      (2.12) 

The solution to this equation is given by  

    n ny GJ x HY x   (2.13) 

where G and H are arbitrary constants and  nJ x  and  nY x  the Bessel 

functions of first and second kind (of order n), respectively. The expressions for 

the Bessel functions of order zero, (which are the ones we obtain after the 

coordinate transformation) are given by the following series expansions: 

  

2 4 6

0 2 2 2 2 2 2
1 ...

2 2 4 2 4 6

x x x
J x     

  
 (2.14) 

 

   
0 0

2 4 6

2 2 2 2 2 2

2
ln

2

2 1 1 1
1 1 ... ,    =0.5772156...

2 2 4 2 2 4 6 2 3

x
Y x J x

x x x







     
  

    
          

      

 (2.15) 
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 If we introduce the following coordinate transformation: 

 
3 2 2

2 3 2 22
2 2

,        
r r r

i i i
R R R

         (2.16) 

equation (2.11) can be rewritten as follows: 

 
2 2

2 2 2
2 2

dW dW A R
W i

d d
   

   
    (2.17) 

 The solution to the previous equation is the sum of the solution of its 

homogeneous counterpart (identical to equation (2.12) with n=0) plus the 

particular solution 

 
2

2p

A R
W i

 
  (2.18) 

Therefore, we have 

    
2

0 0 2h p

A R
W W W GJ HY i 

 
      (2.19) 

The boundary conditions are  

  
3

2 0W r R W i 
 

    
 

 (2.20) 

    0 0W r W       (2.21) 

The second boundary condition gives H=0, since  0 0Y     . Enforcing the 

boundary condition at r=R, we obtain: 
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3 2 2
2

0 2 2 3

2
0

1
0      

A R A R
GJ i i G i

J i


   



 
     

  
 
 

 (2.22) 

and therefore the final expression for the function W(r) becomes: 

 

 

3

2
02 2

2 23

2
0

3

2
02

2 3

2
0

       1

r
J i

RA R A R
W r i i

J i

r
J i

RA R
i

J i



   




 


 
 
    
 
 
 

  
  

   
  
  

  

 (2.23) 

Now, if we define  

 
3

2i    (2.24) 

we can rewrite equation (2.23) as   

  

 

2 0

2
0

1

r
J

A R RW r i
J 

       
 

  

 (2.25) 

and the final expression for the longitudinal velocity profile w becomes 

  
 

2 0

2
0

, 1 i t

r
J

A R Rw r t i e
J



 

       
 

  

 (2.26) 
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 Normalizing the previous expression using the maximum centerline velocity of 

the Poiseuille flow with a steady pressure gradient sk  of the same magnitude as 

the amplitude of the oscillatory pressure gradient A, (i.e., sA k ), we get: 

  
 

 

 

 

0

2 2
0

, 4 , 4
ˆ , 1

0s s

i t

r
J

w r t w r t i Rw r t e
w r k R J





         
    

  

 (2.27) 

Recalling the expression for the parameter   given by equation (2.24), we can 

express the normalized longitudinal velocity for pulsatile flow in a rigid 

cylindrical vessel as follows: 

  
 

0

2
0

4
ˆ , 1 i t

r
J

Rw r t e
J



        
  

  

 (2.28) 

2.2.2 Equations of Motion for the Deformable Wall Theory 

2.2.2.1 Equations of motion for the blood flow 

 One of the fundamental differences between Womersley’s solutions for rigid 

and deformable cylindrical vessels is the existence of a radial component of the 

velocity u in the deformable wall case. This component of the velocity is much 

smaller than the longitudinal velocity w, but is of critical importance, since it is 

intimately related with other important differences between the two sets of 
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solutions, namely the existence of wave propagation phenomena in the 

deformable wall theory.  

 
Figure 2-2: Qualitative differences in the velocity profiles of Womersley’s rigid and deformable wall 

theories. The radial velocity component and the dependence of the profiles on the longitudinal coordinate z 

are both factors related to the presence of wave propagation in the mathematical model. Note: for 

illustrative purposes, the wavelength of the flow is shown as much shorter than it is in reality 

  

 Figure 2-2 illustrates this small but important difference between the velocity 

profiles present in the two theories. As a consequence of this, the solutions for the 

deformable theory are no longer fully developed, since as we will see in this 

section, the velocity profiles (both longitudinal and circumferential) will depend 

on the position along the vessel (z): this is again in agreement with the existence 
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of waves propagating through the vessel at a finite speed. Therefore, the velocity 

profiles at a given time t will differ slightly at different positions along the vessel. 

 Considering the axisymmetry of the velocity field, the radial and longitudinal 

components of the Navier-Stokes equations of motion become: 

 
2 2

2 2 2

1 1u u u p u u u u
u w

t r z r r r r r z




        
                   

 (2.29) 

 
2 2

2 2

1 1w w w p w w w
u w

t r z z r r r z




        
                  

 (2.30) 

whereas the continuity equation is simply: 

 0
u u w

r r z

 
  

 
 (2.31) 

 The fluid equations of motion given by (2.29)-(2.31) can be simplified 

significantly if long-wave approximations are considered. These assumptions 

consist of mainly two points: 

- The length of the propagating wave (L) is much larger than the vessel 

radius R. 

- The wave speed c is much higher than the average longitudinal velocity w  

within the tube. 

These two assumptions imply: 

 , 1
R w

L c
 (2.32) 
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 To support these assumptions with physiologic data, let us consider the 

example of a common carotid artery. For this vessel, one can estimate the pulse 

velocity c using the Moen-Korteweg formula for wave speed 0c  for an inviscid 

fluid: 

 0 2

Eh
c

R
  (2.33) 

 For a common carotid artery, with 64 10E    dyn/cm2, h=0.03 cm, R=0.3 

cm and 1  g/cm3, we have 0 450c  cm/s. We can estimate the mean velocity 

w  by dividing the flow rate (7.5 cm3/s) by the cross sectional area of the artery. 

This produces a value for w  of 25 cm/s. Therefore, the ratio of mean velocity to 

wave speed is  

 
0

25
0.055 1

450

w

c
   (2.34) 

 Womersley considered trial functions compatible with the long-wave 

assumption for the flow variables u, w and p of the form: 

    
 

1, ,

z
i t

cu r z t u r e
 

  (2.35) 

    
 

1, ,

z
i t

cw r z t w r e
 

  (2.36) 

    
 

1, ,

z
i t

cp r z t p r e
 

  (2.37) 
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where   is the frequency of oscillation of the pressure and velocity waves and c 

is the wave speed. Note that these expressions are a generalization of the ‘infinite 

wave speed’ for the rigid case given by equation (2.8). 

 Using the long-wave assumptions it is possible to estimate the scaling of the 

radial component of the velocity of the fluid u relative to the longitudinal 

component w. From (2.31) and (2.36), we have: 

 0
u u w u

w
r r z R c

 
    

 
 (2.38) 

and we obtain:  

 
Rw

u
c


  (2.39) 

 It follows that the nonlinear terms in equations (2.29)-(2.30) are in general of 

order 1c  compared with the main linear terms and can therefore be neglected as 

a first approximation. Similarly, the terms containing second-order derivatives in 

z, can be neglected as well: 

  
     2 2 2 2

1
12 2 2 2

z z
i t i t

c cu u u r
u r e e

z c r r

     
  

  
 (2.40) 

  
     2 2 2 2

1
12 2 2 2

z z
i t i t

c cw w w r
w r e e

z c r r

     
  

  
 (2.41) 

 Considering all these simplifications, the momentum equations reduce to: 
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2

2 2

1 1u p u u u

t r r r r r




    
         

 (2.42) 

 
2

2

1 1w p w w

t z r r r




    
        

 (2.43) 

 Now, substituting the expressions for u, w, and p given by equations (2.35)-

(2.37) into the simplified momentum and continuity equations and canceling the 

exponential terms, we obtain: 

  
       

2
1 1 1 1

1 2 2

1 1dp r d u r du r u r
i u r

dr dr r dr r
 



 
     

 
 (2.44) 

    
   

2
1 1

1 1 2

1i d w r dw r
i w r p r

c dr r dr


 



 
   

 
 (2.45) 

 
   

 1 1
1 0

du r u r i
w r

dr r c


    (2.46) 

 Rearranging the terms, we obtain the following system of ordinary differential 

equations: 

 
   

 
 

2
1 1 1

12 2

1 1 1d u r du r i dp r
u r

dr r dr r dr



 

 
    

 
 (2.47) 

 
   

   

2
1 1

1 12

1d w r dw r i i
w r p r

dr r dr c

 

 
     (2.48) 

 
   

 1 1
1 0

du r u r i
w r

dr r c


    (2.49) 
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 Equations (2.47),(2.48) are (similar to what we obtained for the rigid wall 

theory) forms of Bessel equations with known solutions. To put equations (2.47)-

(2.49) in standard form, we introduce the same change of variables defined by 

equations (2.10), (2.16) and (2.24): 

3 3

2 2,      ,      
r r

R i i
R R


   


       

 Using these parameters, we can rewrite the momentum and continuity 

equations as follows: 

 
   

 
 2

1 1 1
12 2

1 1
1

d u du dpi
u

d d R d

  


     

  
    

 
 (2.50) 

 
   

   
2

1 1
1 12

1 1d w dw
w p

d d c

 
 

   
    (2.51) 

 
   

 1 1
1 0

du u i R
w

d c

  


 
  


 (2.52) 

 The boundary conditions are zero velocity at the wall and finite velocity at 

the center of the vessel. However, because the vessel wall is in motion, the first of 

these boundary conditions presents a very important difficulty, given that the 

position of the vessel wall is unknown since it is part of the solution. This makes 

it impossible to obtain an analytical solution for the equations in their present 

form. We can circumvent this problem by applying the boundary condition at a 
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fixed radius R, which is assumed to be the average position of the vessel wall. By 

doing this, the approximate boundary conditions become: 

 

3

2
1

3

2
1

0

0

u i

w i





 
 

 

 
 

 

 (2.53) 

 
 

 

1

1

0

0

u

w

 

 
 (2.54) 

 Solutions to the momentum equations that satisfy the continuity equation as 

well as the boundary conditions are: 

    
 1 1 12 2

R
u G J H J

i

  
  

  

    
  

 (2.55) 

    
 1 0 02 2

R
w GJ H J

i

 
  

  

    
 

 (2.56) 

  


 
 

  
 

1 0
p HJ

R
 (2.57) 

where G, H are arbitrary constants and  

 
i R

c


   (2.58) 

These solutions can be simplified by noting that: 
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 1
R

L
  (2.59) 

so that 

 0 1
r

J
R

 
 

 
 (2.60) 

and 

 1

1

2

r r
J

R R
  

 
 

 (2.61) 

Using these simplifications, the solutions given by equations (2.55)-(2.57) become: 

 

    1 1 22

i R i r
u r G J H

c c

 



 


 (2.62) 

    1 0

1
w r GJ H

c



   (2.63) 

  1p r H  (2.64) 

 The constants G, H will be determined by matching the fluid and wall 

velocities at the interface (r = R). Note that equation (2.64) implies that the 

pressure is constant over the cross section of the vessel. 

 We now proceed to obtain the expressions that describe the motion of the 

vessel wall. 
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2.2.2.2 Equations of motion for the vessel wall 

 The vessel wall equations of motion are written in the context of linear 

elasticity and thin-walled tube theories. Cauchy’s equation of motion is: 

 
2

02
s u B T
t




   


 (2.65) 

where u  is the displacement vector whose expression in cylindrical coordinates is: 

 0u





 
  

  
 
  

 (2.66) 

where   and   represent the wall displacement in the radial and longitudinal 

directions, respectively. Furthermore, the axisymmetry assumption makes the 

second component of the displacement vector identically zero. 0B  represents a 

body force per unit volume which will be related to the pressure and shear forces 

coming from the fluid domain. Lastly, T  represents the Cauchy stress tensor for 

the vessel wall. The divergence of this tensor will be obtained by considering two 

different stress states separately and then combining them together using linear 

superposition: 

- Internal pressurization with no axial strain 

- Axial force with no internal pressure 
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 Figure 2-3 lists the variables describing the two stress states mentioned above, 

where R  and h  represent the vessel radius and thickness, respectively. E , s  

and   are the vessel wall’s Young’s modulus, density and Poisson’s ratio, and   

is the blood density. 

 
 

Figure 2-3: Scheme of the radial    and longitudinal    displacements of a thin-walled cylindrical 

segment. 

 

The stresses and strains of the vessel wall are related by the linear elastic 

constitutive equation given by: 

   
1

1 kkT T I
E

      (2.67) 
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Internal pressurization with no axial strain 

 In this state, making use of thin-walled membrane theory, we assume that the 

radial stress rrT  is small compared to the circumferential or longitudinal stresses 

T  and zzT . Since there is no axial strain, we have: 

    
1

1 0    zz zz zz zzT T T T T
E                (2.68) 

The circumferential strain   for a thin-walled tube is given by  

 
 2 2

2

R R

R R

   




 
   (2.69) 

Using equation (2.67) to write this strain component as a function of the stresses, 

and using the result obtained in equation (2.68), we have: 

    
 2

1
1     

1zz

E
T T T T

E R R   

 
  


          

 (2.70) 

Therefore, if we define  

 
 21

E
B





 (2.71) 

we obtain  

   ,    zzT B T B
R R

 
   (2.72) 
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Axial force with no internal pressure 

 In this state, we assume that the radial stress rrT  is small compared to the 

circumferential or longitudinal stresses T  and zzT . Since there is no 

circumferential strain, we have: 

    
1

1 0    zz zzT T T T T
E                 (2.73) 

The longitudinal strain zz  is given by  

    
 2

1
1     

1zz zz zz zz

E
T T T T

z E z

 
  



 
          

 (2.74) 

and therefore the stresses for this state can be written as: 

   ,    zzT B T B
z z

 


 
 

 
 (2.75) 

By combining, using linear superposition, the states defined by equations (2.72) 

and (2.75) we obtain the following expressions for the stresses: 

   ,    zzT B T B
R z R z

   
 
    

      
    

 (2.76) 

Using the thin wall assumption, where ,  r R h R , the divergence of the stress 

tensor for the combined state results in the following radial and longitudinal 

components: 

  
1rr rrr zr

r
r R

T T T TT T B
T

r r r z r R R z
    


 

    
           

    
(2.77) 
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    
2

2

1 1 z zz
rzz

T T
T rT B

r r r z R z z
   



     
       

     
 (2.78) 

 Therefore, the radial and axial equations of motion for the vessel wall can be 

expressed as follows: 

 
2

2 2
r
s s

B B

t R R z

   

 

  
   

  
 (2.79) 

 
2 2

2 2
z
s s

B B

t R z z

   

 

    
   

   
 (2.80) 

 Using the thin wall assumptions, the radial and longitudinal components of 

the body force vector can be related to the pressure and shear stresses acting on 

the interface of the wall with the fluid domain as follows (see Figure 2-4): 

   ,  r z

p
B B

h h


    (2.81) 

 

Figure 2-4: Radial and longitudinal components of the vessel wall body force vector 0B . 
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 The fluid vector v  is of the form 

 0 0

r

z

v u

v

v w

   
   

    
   
   

 (2.82) 

and the fluid shear  can be written follows: 

 rz zr

u w

z r
   

  
    

  
 (2.83) 

where   represents the kinematic viscosity of the fluid. We can express the 

longitudinal body force zB as follows: 

 z
r R

u w
B

h h z r

 



  
     

  
 (2.84) 

and therefore, the final expressions for the radial and axial equations of motion 

for the vessel wall can be expressed as follows: 

 

 
2

2 2s s

p B

t h R R z

   

 

  
   

  
 (2.85) 

 
2 2

2 2s s
r R

u w B

t h z r R z z

     

 

       
       

       
 (2.86) 
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2.2.2.3 Coupling of the Fluid and Solid motions 

 The motion of the fluid is coupled with the motion of the vessel wall through 

the action of the pressure and shear stress on the wall as illustrated in Figure 2-4. 

Mathematically, the coupling is manifest by the presence of the pressure p and 

the velocities u and w in equations (2.85)-(2.86).  

 The pressure acting on the vessel wall, from equations (2.37) and (2.64) is: 

  
 

, ,

z
i t

cp r z t He
 

  (2.87) 

hence, the radial momentum equation for the wall becomes: 

 
2

2 s s

zi t cH B
e

t h R R z

  


 

 
 
 
  

   
  

 (2.88) 

 For the longitudinal equation (2.86), we can make use of the long-wave 

approximation and neglect the gradient of the radial velocity u with respect to 

the longitudinal coordinate z, since it is small compared to the gradient of the 

longitudinal velocity w with respect to r.  By doing this, equation (2.86) reduces 

to: 

 
2 2

2 2s s
r R

w B

t h r R z z

     

 

      
      

      
 (2.89) 

 Using the result for the velocity w given by equations (2.36) and (2.56), we 

have that the gradient of w with respect to r is  
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 0 02 2

r R
r R

zi t cw R
GJ r H J r e

r r R Ri

 

  

 
 
 




        
               

 (2.90) 

This expression, after using the approximations given by equations (2.59)-(2.61) 

becomes: 

 
  2

1
32r R

zi t cw G J R
H e

r R c





 
 
 



    
     

   
 (2.91) 

and therefore the longitudinal momentum equation results in: 

 
 2 2 2

1
2 3 2

1

2s s

zi t cG J H R B
e

t h R c R z z

      

  

 
 
 
       

        
    

 (2.92) 

2.2.2.4 Matching the boundary conditions at the vessel wall 

 The vessel wall equations (2.88) and (2.92) contain two arbitrary constants 

(G and H) that are yet to be determined. These can be obtained by matching the 

motion of the fluid and the vessel wall at the interface, in both the radial and the 

longitudinal directions. We must impose the condition that the radial and 

longitudinal velocities of the fluid and wall at the interface are identical, since we 

are considering a Newtonian (and therefore viscous) fluid. As we saw in equations 

(2.53)-(2.54), these conditions are applied only approximately at the neutral 

position of the wall (r=R), since the position of the vessel wall forms part of the 

solution and therefore can not be obtained analytically. Furthermore, it is 
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reasonable to assume the same functional form for the radial and longitudinal 

motion of the wall as the one used for the pressure and flow velocities. The 

frequencies of the oscillations of the wall motion will be the same as those present 

in the fluid (although this does not mean that the wall motion is necessarily in 

phase with the oscillations of the fluid).  Considering this, we have: 

Radial direction: 

  
 

,

z
i t

cz t Ke





  (2.93) 

 ( , , )u R z t
t





 (2.94) 

Longitudinal direction: 

  
 

,

z
i t

cz t Ne





  (2.95) 

 ( , , )w R z t
t





 (2.96) 

where K and N are two new constants to be determined.    

 Inserting the expressions of   and   into equations (2.88) and (2.92), and 

writing the explicit expression of the boundary conditions given by equations 

(2.94) and (2.96), we obtain (after simplifying the exponential terms): 
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Coupled equations of motion 

Radial 

 2
s s

H B K i
K N

h R R c


 

 

        
  

 (2.97) 

Longitudinal 

 
     


  

     
               

2 2
12

3 2

1

2s s

J R B i
N G H K N

R R ch c c
 (2.98) 

Boundary conditions 

Radial 

 
 1

22

i RJ i R
i K G H

c c

 





 


 (2.99) 

Longitudinal 

  0

1
i N J G H

c



    (2.100) 

 Some simplifications are possible by noting that in equation (2.98), the term 

multiplied by H is small compared with the others, since it is divided by 3c . 

Furthermore, in equation (2.97), out of the two factors multiplying the constant 

K, the one on the left-hand-side of the equation is much smaller that the one on 

the right-hand-side. Considering these two simplifications, equations (2.97)-

(2.100) can be rewritten as: 
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0
s s

H B K i
N

h R R c




 

       
  

 (2.101) 

 
    


 

    
      

  

2
12

2s s

J B i
N G K N

R chR c
 (2.102) 

 
 1

22

i RJ i R
i K G H

c c

 





 


 (2.103) 

  0

1
i N J G H

c



    (2.104) 

 These 4 equations (2 coupled equations of motion and 2 boundary conditions), 

contain 4 undetermined arbitrary constants (G, H, K and N). However, these 

arbitrary constants are not the only unknowns in the system, since the wave 

speed c is still to be determined. In the next section we describe how the wave 

speed can be obtained from the system given by equations (2.101)-(2.104). 

2.2.2.5 Obtaining the wave speed for the fluid-solid system 

 Equations (2.101)-(2.104) can be written in the form of the following system 

of linear equations: 

 

12 13 14

21 23 24

31 32 33

41 42 44

0 0

0 0

0 0

0 0

Ga a a

a a a H

a a a K

a a a N

    
    
    

    
    
    

    

 (2.105) 
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where the matrix coefficients ija  are given by the different terms of equations  

(2.101)-(2.104). Since the system defined in equation (2.105) is homogeneous, a 

nontrivial solution is obtained only if the determinant of the matrix is zero. 

Therefore, if we enforce that  

  det 0ija   (2.106) 

we obtain, after some algebra, the following quadratic equation:  

      2 2 1 2
1 1 1 2 2 0

2

s sh h
g g g g

R R

 
   

 

                  
 (2.107) 

In this equation,   is defined as 

 
2

Bh

Rc



  (2.108) 

and g is 
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 Solution to equation (2.107) will provide an expression for the wave speed c 

(after the parameter   is obtained) as a function of the material properties of the 

fluid and wall, as well as the frequency of the flow. Equation (2.107) is usually 

referred to as the “frequency equation”. If we recall the expression for the wave 

speed 0c  in inviscid flow given by equation (2.33):  



WOMERSLEY THEORY FOR BLOOD FLOW IN ELASTIC TUBES 42 

 

 

2
0 2

Eh
c

R
  

we can re-write equation (2.108) as follows: 
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and therefore, the final expression for the wave speed c as a function of the 

parameter   is: 
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 Equation (2.107) has two solutions for the parameter  , and consequently for 

the wave speed c. Only one of them has physical relevance for this problem: the 

one whose modulus is smaller than the inviscid wave speed given by equation 

(2.33) [51], since waves travel slower in more viscous fluids. Furthermore, c is a 

complex number and therefore (unlike 0c ) is not a true speed in the physical 

sense. If we decompose the complex wave speed c into its real and imaginary 

parts as follows: 

 
1 1 1

R I

i
c c c
   (2.112) 

we can study the consequences of its complex nature in the velocity and pressure 

solutions, by recalling the exponential expression governing the phase variation: 
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We can observe that the imaginary part of the wave speed Ic  is effectively 

changing the amplitude of the pressure and velocity waves. This effect is known 

as attenuation, and it is not present in the inviscid case. On the other hand, the 

real part of the wave speed Rc  will effectively change the phase of the wave, 

adopting different values for different frequencies. This effect is known as 

dispersion.  

2.2.2.6 Arbitrary constants of the flow and vessel wall solutions 

 The matrix defined in equation (2.105) is a rank-three matrix, and therefore 

once the wave equation c is obtained, we must specify the value for one of the 

four arbitrary constants (G, H, K and N). By looking at the flow field solutions 

given by equations (2.62)-(2.64), H is the obvious choice for this constant. This 

constant will represent the prescribed amplitude of the input oscillatory pressure 

(at z = 0). We can then obtain the expressions for the rest of the constants (G, K 

and N) once H is fixed. Therefore, we have: 
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Using the equations defining the system (2.105) to eliminate H, we get, after 

some algebra: 
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We are now ready to write down the final expressions for the velocity 

components of the flow. 

2.2.2.7 Final expressions for the flow velocities 

 The longitudinal flow velocity is now fully determined, using equations (2.36), 

(2.63) and (2.114): 
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where M is a constant usually referred to as the “elasticity factor”, whose 

expression is given by: 
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 It is interesting to compare equation (2.117) with its rigid wall counterpart. 

As we will see, they are very similar, except for the presence of the elasticity 

factor. To make a valid comparison, we must take some care in writing equation 

(2.117), since there H represents the prescribed input oscillatory pressure, 

whereas in the rigid case A (or sk ) represents the prescribed oscillatory pressure 

gradient. We can therefore calculate the oscillatory pressure gradient for the 

deformable case using equation (2.113) and set it equal to the pressure gradient 

of the rigid wall case (A or sk ). By doing this, we have: 
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Therefore, we can set (recall equation (2.7)): 

       
i ic
H A H A
c




     (2.120) 

If we now insert this definition for the parameter H as a function of the pressure 

gradient of the rigid case into equation (2.117), and normalize it using the 

maximum centerline velocity of the Poiseuille solution of the same pressure 

gradient (see equation (2.27)), we obtain the deformable wall counterpart of the 

rigid wall longitudinal velocity given by equation (2.28): 
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 As we stated previously, the difference between equations (2.121) and (2.28) 

reduces to the elasticity factor M.  However, since this factor is a complex 

number whose real and imaginary parts depend on the frequency of the flow, the 

impact on the differences between the rigid and deformable wall solutions is not 

obvious. 

 In the interpretation of equations (2.117) and (2.121), it is important to 

realize that the oscillatory flow in a deformable vessel has two oscillations: one in 

time, and one in space. Both oscillations are related to the same frequency   and 

therefore the same period 2 /T   . During this period T, the input oscillatory 

pressure completes one cycle in time, whereas the pressure within the vessel 

completes one cycle in space: this is the essence of wave propagation. The spatial 

wave has a length of L cT , and points in the vessel separated a distance L will 

have in-phase pressures and velocities for each time t.  

 The differences between the rigid and deformable wall solutions for the 

longitudinal velocity profiles will be especially significant if the vessel considered 

is long enough for the spatial wave to be complete. If the length l of the vessel is 

much smaller than the wavelength L of the flow and velocity waves, then the 

differences between the rigid and deformable wall solutions for the axial velocity 

are quite small, because the spatial wave does not occur in full. This is indeed the 

case in most vessels in the cardiovascular system, whose length l is much shorter 
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than the characteristic length of the waves associated with the physiologic 

frequencies. 

 We can now obtain the expression for the radial velocity of the vessel using 

equations (2.35), (2.62) and (2.114). Using these equations, we obtain: 
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Now, if we normalize this expression using the pressure parameter as previously 

defined by equation (2.120) and the maximum centerline velocity of the Poiseuille 

solution, we get: 
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or, equivalently 
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If we evaluate this expression at the vessel wall (r = R), we have: 
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where g is given by equation (2.109). Equation (2.125) is of particular interest 

since it provides the radial velocity of the vessel wall. 

 To finish the present chapter, we summarize all the steps involved in 

obtaining the analytical solutions for pulsatile flow and pressure in a deformable 

cylindrical vessel. 

1. Given the input pressure gradient  p k tz
  , we decompose it into its steady 

part sk  and oscillatory part  k t  (see Figure 2-5). 

 

Figure 2-5: Decomposition of the input pressure gradient into its steady and oscillatory components. 

 

2. The steady part of the pressure gradient defines the steady component of the 

flow, given by Poiseulle’s solution 

    2 2
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k
w r r R
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3. For the oscillatory part of the pressure gradient, we do a Fourier 

decomposition of the wave, and for each mode we obtain its frequency   and 

amplitude A  (see Figure 2-5). 

4. We then proceed to obtain the oscillatory components of the pressure and 

velocity fields. Since Womersley’s deformable wall solution is obtained in terms of 

an input oscillatory pressure (not an input oscillatory pressure gradient), we 

relate the amplitude of the input oscillatory pressure gradient A (see Figure 2-5 

and equations (2.7), (2.120)) with the parameter H defining the amplitude of the 

input oscillatory pressure: 

 
ic

H A


  (2.127) 

5. For each frequency   and amplitude of the input oscillatory pressure H, we 

solve the frequency equation to obtain the wave speed c associated with the 

frequency   : 
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6. Once c,   and H are known, the expressions for the oscillatory pressure and 

velocity components are given by the real part of: 

 
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7. The final expressions for the velocity and pressure field are obtained via 

superposition of the steady and oscillatory components: 
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2.3 Coupled Fluid-Solid Interaction Equations (3D) 

 Womersley’s theory is inapplicable in patient-specific models of the 

vasculature, due to the arbitrariness of the geometry, which usually features 

bifurcations, tapering of vessels, etc. For studying the coupled problem of blood 

flow and vessel wall deformation in such models, one must resort to numerical 

formulations to solve the partial differential equations describing the three-

dimensional flow. When the deformation of the domain is small, the vessel walls 

are assumed to be rigid and therefore the fluid equations can be written in the 

Eulerian formulation and solved accordingly. This has been the strategy usually 

adopted to compute blood flow in large, patient-specific models [6,16,17,18,19,20]. 

The rigid wall approximation is made in large part because of the difficulty of 

solving the coupled blood flow / vessel deformation problem. However, this 

observation was made for arteries where wall motion is small and may not be 

valid for arteries where deformations are larger (e.g., the thoracic aorta). 

Furthermore, as we explained in the introduction, the assumption of rigid vessel 

walls precludes wave propagation phenomena, fundamentally changes the 

character of the resultant solutions, and results in difficulties in coupling three-

dimensional domains with domains described using one-dimensional wave 

propagation methods [23,24]. 
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When the vessel wall deformation is considered, the fluid domain is no longer 

constant. In this case, an Eulerian description for the blood flow equations is not 

appropriate and instead a mixed Lagrangian-Eulerian formulation is commonly 

used, where the concept of grid velocity is introduced. The grid velocity is usually 

defined in such a way that that it matches the physical velocity of the fluid-solid 

interface, and then in the rest of the domain it varies according to an arbitrary 

mapping   between the current and some reference configuration for the fluid-

solid system, (see Figure 2-6 ). Writing the fluid equations in this Lagrangian-

Eulerian frame, together with the definition of this arbitrary mapping are the key 

features of a widely used formulation to solve flows in moving domains: the 

Arbitrary Lagrangian-Eulerian (ALE) formulation. Excellent work on this 

formulation can be found in [33,34,39,52] and [38]. In this Section, we briefly 

describe the basic “ingredients” of this formulation, which involve the solution of 

three coupled problems: 

1. The blood flow problem on a moving grid (ALE formulation). 

2. The wall deformation problem (Lagrangian formulation). 

3. The time evolution of the grid of the domains (through the arbitrary 

mapping  ). 
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Figure 2-6: Reference and Current configurations of the blood and vessel wall domains and the mapping 

  that relates them. 

 

 The mapping   is a continuous function that relates the position of a point 

0x  in the Reference Configuration 0 0 0
f s     with its position x  in the 

Current configuration      f st t t     for all times t I : 
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 The grid velocity Gv  is defined such that is equal to the real velocity of the 

structure. The fluid domain grid velocity is usually determined through a lifting 

[53] of the velocity of the structure at the interface s  into the interior of the 

fluid domain  s t . 

 The flow mass and momentum balance equations in the ALE formulation are: 
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The equations are written in the fixed Reference configuration 0
f , but include 

the grid velocity Gv  and the deformation gradient F  defined as: 
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 (2.138) 

with detJ F  and 0 J  .  

 The wall deformation problem in Lagrangian formulation can be written as 
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 (2.139) 
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   The coupling of the fluid and solid problems at the interface s  is done via 

two Transmission or Interface Conditions: 

- Kinematic condition (continuity of velocities): 

     ,                                                        on fluid solid
sv v   (2.141) 

- Dynamic condition or action-reaction principle (continuity of tractions): 

     ,                                                        on fluid solid
st t   (2.142) 

 Obtaining the solution of the coupled problems and the evolution of the 

computational grid can be computationally intensive, especially if the 

deformations are large. Significant effort has resulted in faster iterative 

algorithms for the solution of these problems [38,42,54]. However, as a 
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consequence of the computational expense of this method, the cardiovascular 

models solved using the ALE formulation have usually considered reduced and 

significantly simplified geometries [21,22,40,41,55,56]. 

 The main goal of this thesis was to develop a new formulation to circumvent 

the problems related to the computational expense of the ALE formulation and 

therefore enable modeling of blood flow and vessel wall deformation in large scale 

patient-specific models of the vasculature in a clinically-relevant time frame. The 

formulation proposed in this thesis represents a simpler approach to the coupled 

problem of blood flow and vessel wall deformation than the ALE approach, but 

offers substantial advantages over rigid wall formulations commonly used for 

large patient-specific cardiovascular simulations. In the following chapter, we 

present the details of this new mathematical formulation. 
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Chapter 3 

Chapter 3. Coupled Momentum Method 

for Fluid-Solid Interaction (CMM-FSI)  

 In this chapter, we present the mathematical formulation of the Coupled-

Momentum Method and discuss issues related to the fluid-solid coupling, 

membrane formulation, time integration algorithm, and boundary and initial 

conditions. We also describe how to obtain the wall shear stress field using a 

variationally consistent approach.   
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3.1 Introduction 

  In this chapter we present a new formulation for modeling blood flow in 

deformable arteries called the Coupled Momentum Method for Fluid-Solid 

Interaction problems (CMM-FSI).  This formulation starts from a conventional 

stabilized finite element formulation for the Navier-Stokes equations in a rigid 

domain and modifies it in such a way that the deformability of the wall domain 

surrounding the fluid is taken into account. The main features of this formulation 

can be summarized as follows: 

1. The zero-velocity condition (Dirichlet) is removed from the lateral surface of 

the fluid domain and replaced with a traction condition (Neumann) which is to 

be determined using the elastodynamics equations that describe the motion of the 

vessel wall. 

2. Using a thin wall approximation, this unknown interface traction can be 

related to a body force for the vessel wall. This approach is analogous to that 

used by J.R. Womersley in his derivation of an analytical solution of pulsatile 

flow in a deformable cylindrical domain [57]. 

3. This body force can be related through the elastodynamics equations with the 

mass and stiffness terms of the vessel wall.  

4. A membrane formulation is used to describe the mass and stiffness terms of 

the solid. This is justified because the cardiac pulse has a long wavelength 
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(meters) compared with the diameters of arteries (centimeters or millimeters).  

Consequently, arteries tend to respond primarily in membrane mode rather than 

in bending mode. The advantage of this approach is that no additional degrees-

of-freedom beyond the membrane wall velocities are needed. 

5. A strong coupling approach is used whereby the degrees-of-freedom of the 

vessel wall and the fluid boundary are the same. This results in a monolithic 

algorithm where the solid momentum contributions are embedded into the fluid 

equations using the same degrees-of-freedom. The membrane displacements are 

obtained by consistent time integration of the fluid velocities and accelerations. 

6. A linearized kinematics approach is adopted for the coupled problem.  This 

enables a representation of the solid equations using the same Eulerian frame as 

in the fluid equations. Furthermore, the fluid mesh is kept fixed and therefore the 

computational time compared to ALE formulations is greatly reduced. As a result 

of this, we have a fluid-solid interface mesh that is kept fixed, but where the 

nodes will have nonzero velocities in general. This is a feature also present in 

transpiration condition formulations [47,48] but in the work presented here is 

obtained by adopting a linearized kinematics formulation for the solid domain 

following the approach described by J.R. Womersley [36]. 

7. A linear membrane enhanced with transverse shear modes is used due to the 

inherent lack of stability of the linear membrane under transverse loading. These 
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additional stresses provide stiffness to the structure without using additional 

degrees-of-freedom other than the membrane nodal displacements.  

 With this approach, the effects of the vessel wall motion are embedded in the 

weak form representing the blood flow resulting in a single weak form for the 

combined problem.  As a result of this, only minimal changes in the stiffness 

matrices and residuals of the rigid wall finite element model are required to 

incorporate the effects of the wall motion.  The approach delineated here results 

in a tractable, efficient and robust procedure to simulate fluid-structure 

interactions in three-dimensional models of the cardiovascular system.  The 

computational effort is comparable to that of rigid wall formulations while at the 

same time it respects the essential physics and enables realistic simulation of 

wave-propagation phenomena in the arterial system as well as a linearized 

description of wall deformation. While the method as presented here (i.e., 

formulated in fixed grids) will not produce results equivalent to those given by 

ALE formulations in problems where the deformations are large (10% and 

above), the algorithmic simplicity will enable the solution of larger cardiovascular 

models in a clinically-relevant time frame, as is often required in surgical 

planning applications. The method accomplishes all this avoiding the above-

mentioned drawbacks of the ALE formulation. 
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3.2 Governing Equations (Strong and Weak Forms) 

3.2.1 Blood Flow Equations (Strong Form) 

 Blood flow in the large vessels of the cardiovascular system can be 

approximated as the flow of an incompressible Newtonian fluid in a domain 

sdn  (see Figure 3-1), where sdn  is the number of spatial dimensions. The 

boundary   of this domain   can be conceptually divided in three different 

partitions such that g h s       ; g h s     . 

  The strong form of the continuity and momentum balance equations 

governing such flow, written in advective form ([16,58,59] ) is as follows:  

Given : 0 sdnf ( ,T)  , : 0 sdn
gg ( ,T)   , : 0 sdn

hh ( ,T)   , 

0: sdnv  ; find v(x,t)  and p(x,t)  x  , 0t [ ,T ]   such that  

 0v   ,  0(x,t) ( ,T)  (3.1) 

 ,tv v v p f           ,  0(x,t) ( ,T)  (3.2) 

 v g ,  0g(x,t) ( ,T)   (3.3) 

  nt n pI n h      ,  0h(x,t) ( ,T)   (3.4) 

 f
nt t ,  0s(x,t) ( ,T)   (3.5) 

 00v(x, ) v (x ) ,  x   (3.6) 
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Here, v  represents the blood velocity, p is the pressure,   is the blood density, 

f  is the prescribed body force per unit volume and   is the viscous stress tensor 

defined by 

   Tv v      (3.7) 

where   is the dynamic viscosity.   

 

Figure 3-1: Schematic representation of the Fluid and Solid Domains and their boundaries. 

 

The initial velocity field 0v  is assumed to be divergence-free.  g  represents the 

fraction of the boundary where the given velocity field represented by g  is 

prescribed. h  and s  represent Neumann boundaries where the tractions h  and 
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ft  are prescribed.  h  refers typically to an outflow boundary, and the traction 

h  can be calculated using a constant traction, resistance or impedance boundary 

condition [24]. The lateral boundary of the fluid domain is depicted by s . This 

part represents the interface with the vessel wall. While a no-slip boundary 

condition would be prescribed on s  in the case of a rigid wall approximation, 

this constraint is removed here to enable non-zero wall velocity and replaced by a 

traction ft . This traction is due to the interaction of blood and the vessel wall. 

At this point ft  is unknown but it will ultimately be related to the stiffness and 

mass of the vessel wall using the elastodynamics equations of the solid. 

3.2.2 Blood Flow Equations (Weak Form) 

 We define the trial solution and weighting function spaces for the semi-

discrete formulation of the problem described by (3.1)-(3.7) as  

  1 0  on sd sd

e

k n n
h k e gx

ˆv v( ,t) H ( ) ,t [ ,T ],v P ( ) ,v( ,t) g           (3.8) 

  1 0 0 on sd sd

e

k n n
h k e gxw w( ,t) H ( ) ,t [ ,T ],w P ( ) ,w( ,t)          (3.9) 

  1 0
e

k
h k exp p( ,t) H ( ),t [ ,T ],p P ( )


        (3.10) 

where sdn    represents the closure of the spatial domain ( )   in 3sdn   

dimensions.  In addition, 1( )H   represents the usual Sobolev space of functions 

with square-integrable values and first derivatives in  , which is discretized into 
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eln  finite elements, e .  ( )k eP   is the local polynomial approximation space in 

e  and ĝ  represents an approximation to the prescribed Dirichlet boundary 

condition in the finite element basis.  It is important to note that, because 

stabilized methods are used, the local approximation space  k eP  is the same for 

both the velocity and pressure variables [60].  

 The stabilized formulation used in the present work is based on the methods 

proposed by Hughes and colleagues and is described in Taylor et al. [16] and 

Whiting and Jansen [58].  The diffusive term, pressure term and continuity 

equation are all integrated by parts. Considering the spaces defined above, the 

semi-discrete Galerkin finite element formulation results in the following weak 

form of (3.1)-(3.7): 

Find v  k
h  and  k

hp  such that  

    

   

:

                  +    0
h s g

G ,t

f
n n n

B (w,q; v,p) w v v v f w pI q v dx

w h qv ds w t qv ds qv ds

  


  

            

        



  
 (3.11) 

for all w  k
h  and  k

hq . In this equation, the superscripts h, k of the discrete 

approximation of the continuous variables ( , )h kv have been omitted for simplicity.  

Again, the integral containing the traction ft  in the previous equation is not 

specified yet. It will be determined from the equations governing the motion of 

the surrounding vessel wall, after a number of assumptions are made.  Before 

describing the treatment of the solid domain, it is important to recall that the 
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standard Galerkin method is unstable for advection-dominated flows and in the 

diffusion dominated limit for equal-order interpolation of velocity and pressure.  

A stabilized method is utilized to address these deficiencies of Galerkin’s method.  

The formulation becomes: 

Find v  k
h  and  k

hp  such that  

 

    

        
 

1

1

                        +

                        +

                        +

el

e

el

e

G

n

M C
e
n

e

M

B(w,q; v,p) B (w,q; v,p)

v w v,p w v dx

w v v v,p w v,p v dx

q v,p dx

 

 















       

      

 





e1

0
eln

e






(3.12) 

for all w  k
h  and  k

hq .   v , p  is the residual vector of the momentum 

equation 

   ,tv,p v v v p f             (3.13) 

The additional integrals in equation (3.12) represent the different stabilization 

terms for the incompressible flow equations as discussed in [61], [16] and [58].  

Here v


 is a conservation-restoring advective velocity whose expression is given 

by:  

  ,Mv v p






   (3.14) 
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The stabilization parameters for continuity, momentum and the advective term 

are given by the following expressions: 

 

   
2

2 2
1 2

1

2 :
M

c t v gv c g g


 



    

 (3.15) 

 
  18 tr

C
C

M

C

cg





  (3.16) 

 
   , ,

M

v p g v p


 


 (3.17) 

where 1c  and 2c  are constants defined from the one-dimensional scalar model 

problem of the advection-diffusion equation. The default value for 1c  is one, and 

2c  depends on the order of the basis functions used according to the following 

table: 

Order of Basis Functions 2c  

1 36.0 

2 60.0 

3 128.0 

Table 3-1: Values of 2c  for different basis functions orders. 

 

  is the angular velocity of the reference frame, 
C

C  is a scale factor for C  

which for the default tau matrix used in the present formulation takes the value 

of one, and g  is the covariant metric tensor: 
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  , ,

T

x xg    (3.18) 

These stabilization terms are based on those defined by Shakib [62] and have 

been used by Taylor et al. [16] and Whiting and Jansen [58]. 

3.2.3 Vessel Wall Equations (Strong Form) 

 The classic elastodynamics equations are used to describe the motion of the 

vessel wall in a domain sds n   (see Figure 3-1). The vessel wall mechanics are 

herein approximated using a thin-walled structure assumption, and therefore the 

solid domain s  can be topologically related to the surface defining the lateral 

boundary of the fluid domain s . The solid’s weak form defined in the domain 

s  will be related to the fluid traction integral on the lateral boundary of the 

fluid domain. This assumption together with the consideration of a membrane 

model for the vessel wall nodes will enable a strong coupling of degrees-of-

freedom of the fluid and solid domains and will result in an expression for the 

unknown integral traction  

 
s

fw t ds


   (3.19) 

of equation (3.11). 

The strong form of the vessel wall problem can be described as follows: 
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Given : 0 sds s nb ( ,T)   , : 0 sd

g

s s ng ( ,T)   , : 0 sd

h

s s nh ( ,T)   , 

0: sds nu    and 0: sds n
,tu   ; 

 find su(x,t), x  , 0t [ ,T ]   such that  

 s s s
,ttu b     ,  0s(x,t) ( ,T)   (3.20) 

 su g ,  0
g

s(x,t) ( ,T)   (3.21) 

 s s
nt n h  ,  0

h

s(x,t) ( ,T)   (3.22) 

 

0

0

0

0,t ,t

u(x, ) u (x )

u (x, ) u (x )




,  sx   (3.23) 

where u  is the displacement field, s  is the density of the vessel wall, sb  is the 

prescribed body force per unit volume, s  is the vessel wall stress tensor, and 

0u (x )  and 0
,tu (x )  are the given initial conditions for displacement and velocity, 

respectively.  Furthermore, 
g

s  and 
h

s  represent the parts of the boundary of 

s  where the essential ( sg ) and natural ( sh ) boundary conditions are 

prescribed. 

3.2.4 Vessel Wall Equations (Weak Form) 

 In order to relate the solid problem stated in equations (3.20)-(3.23) with the 

lateral boundary of the fluid domain, s needs to be mapped on s . Assuming a 

thin-walled structure, integrals defined on 
h

s  and s can be related with 
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integrals on the lateral boundary of the fluid domain s  according to the 

following expressions 

    
s

s

dx ds
 

     (3.24) 

    
s
h h

ds dl
 

     (3.25) 

where   represents the vessel wall thickness.  

 The surface traction ft  acting on the fluid lateral boundary due to the 

interaction with the solid is equal and opposite to the surface traction st  acting 

on the vessel wall due to the fluid: 

 f st t   (3.26) 

Invoking once again the thin wall approximation, this surface traction st  can be 

related to a body force sb  acting on the solid domain since for a thin-enough 

structure the internal surface traction st  will be felt uniformly through the wall 

thickness  .  Therefore, it follows that  

 
f

s t
b


   (3.27) 

and thus it is possible to relate the unknown integral term given by equation 

(3.19) with the weak form for the vessel wall problem.  This approach to the 

coupling of the fluid and solid momentum equations is analogous to Womersley’s 
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[57] derivation of an analytical solution for axisymmetric pulsatile blood flow in a 

cylindrical elastic vessel. There, Womersley considered just two components of 

the stress due to the fluid motion being applied to the vessel wall: a longitudinal 

component (related to the viscous stress) and a radial component (related to the 

pressure).  Here, the full stress vector f st t   is considered and the motion is, 

in general, three-dimensional.  

 We now derive the finite element counterpart of equations (3.20)-(3.23).  

Since a strong coupling of the degrees-of-freedom of the fluid and solid domains is 

considered, the displacement, velocity and acceleration fields on the fluid-solid 

interface are identical. Furthermore, since the weak form of the elastodynamics 

equations has the same differentiability requirements on the functional spaces as 

the fluid weak form, we can adopt for the vessel wall problem the same type of 

functional spaces as in the fluid domain: 

 

 1 0  on sd sds
e

sk s n s n s s
h k e gx

ˆu u( ,t) H ( ) ,t [ ,T ],u P ( ) ,u( ,t) g           (3.28) 

 1 0 0 on sd sd
s
e

sk s n s n s
h k e gxw w( ,t) H ( ) ,t [ ,T ],w P ( ) ,w( ,t)           (3.29) 

Considering this, the semi-discrete Galerkin finite element formulation produces 

the following weak form: 
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Find sk
hv   such that 

  +
s s s s

h

s s s s
,tw v dx w : dx w b dx w h ds 

   
          (3.30) 

for all sk
hw  .  The acceleration term has been written as the time derivative 

of the velocity rather than as the second time derivative of the displacement 

field, since the goal is to express the vessel wall equations in terms of the fluid 

unknowns.   

Now, equations (3.24) and (3.25) are utilized to map equation (3.30) into the 

lateral boundary of the fluid domain s : 

 :  +
s s s h

s s s s
,tw v ds w ds w b ds w h dl     

   
          (3.31) 

Considering the expression for the body force sb  given by equation (3.27), the 

final expression of the weak form for the solid domain is 

 :
s s s h

f s s s
,tw t ds w v ds w ds w h dl    

   
            (3.32) 

3.2.5 Combined Formulation: the CMM-FSI Weak Form 

 Equation (3.32) provides an expression for the unknown term in equation 

(3.11) as a function of the solid internal stresses and inertial forces.  Combining 

these two equations together results in the following weak Galerkin form for the 

CMM-FSI method: 
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    

  

:

                   

                  :

                        

h h g

s h s

G ,t

n n

s s s
,t n

B (w,q; v,p) w v v v f w pI q v dx

w hds qv ds qv ds

w v w u ds w h dl qv ds

  

   



  

  

            

   

      



  

  

(3.33) 

The boxed integrals in equation (3.33) define the new terms added to the rigid 

wall theory. The stabilized form of equation (3.33) does not change with respect 

to the one given by equation (3.12) since the stabilization terms affect only the 

interior fluid elements.  Therefore, the final expression for the weak form of the 

CMM-FSI method is: 

    

      

        
e1 1

:

      

    +  +

    +

h h g

el el

e

,t

n n

n n
M

M C
e e

B(w,q; v,p) w v v v f w pI q v dx

w hds qv ds qv ds

q v,p dx v w v,p w v dx

w v v v,p w v,p v d

  


 



 



  

 
 



            

   

         

      



  

  

  

1

    : 0

                        

el

e

s h s

n

e

s s s
,t n

x

w v w u ds w h dl qv ds   




  
       



  

(3.34) 

There are other more general formulations that consider a single weak form for 

the combined fluid-structure problem (see [39]), where the fluid and the structure 

and the structure are considered as a unique continuous medium in an ALE 

frame.  However, in the work presented here (as mentioned in the introduction 
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and to be shown in detail in section 3.3), we consider the same degrees-of-

freedom for the fluid and the structure.  

 In order to complete the formulation of the method, we need to discuss the 

details of the mechanical model for the vessel wall, as well as the linearization 

and time integration schemes used to discretize equation (3.34). 

 

3.3 Finite Element Model for the Vessel Wall 

 The choice of infinitesimal elasticity theory for the constitutive model of the 

wall represents an appropriate first approximation justified by experimental 

evidence showing that the vessel wall constitutive behavior can be reasonably 

assumed as linear within the physiological range of pressures [63]. Furthermore, 

from a numerical standpoint, the adopted fixed-mesh strategy to describe the 

fluid-solid interface is consistent with utilizing infinitesimal elasticity theory for 

the wall. The combination of a linearized kinematics approach and a fixed mesh 

is essential in ensuring a minimal increment in computational effort as compared 

to rigid wall models.  Furthermore, to enforce the identity of the degrees-of-

freedom of the lateral boundary of the fluid domain and the vessel wall, a 

membrane element with only translational degrees-of-freedom represents the 

simplest and most convenient choice. 
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In this section, we derive expressions for the vessel wall stress tensor  s u  and 

mass integrals of equation (3.34), particularized for a membrane-like behavior.   

3.3.1 Mass Matrix Derivation 

 The integral representing the mass of the vessel wall in equation (3.34) 

 
s

s
,tw v ds 


  (3.35) 

does not require special treatment due to the strong coupling of the degrees-of-

freedom of the solid and the fluid. It can be regarded as providing additional 

mass (not to be confused with the “added mass effect” typical of fluid-solid 

interaction problems [64]) to the fluid nodes at the interface with the solid. In 

other words, these nodes receive mass contributions from both the fluid and the 

solid domains. The implementation of this integral is therefore achieved by 

mimicking the structure of the fluid mass integral term  

 ,tw v dx


  (3.36) 

3.3.2 Stiffness Matrix Derivation 

 In this section, we derive the expression of the integral describing the stiffness 

of the vessel wall in equation (3.34), viz. 

  :        
s

sw u ds 

  (3.37) 
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We start by recalling the constitutive equation for a linear, elastic material.  This 

expression is given by: 

 :s C   (3.38) 

where C  is a fourth-order tensor of material constants and  

     
1

sym
2

Tu u u        (3.39) 

is the infinitesimal strain tensor. By virtue of the symmetry of the tensor s , the 

inner product defined in equation (3.37) can be rewritten as: 

      sym : sym : : sym
s s

sw ds w C u ds  
 

      (3.40)     

 The mesh of the vessel wall will be defined by linear triangles when the 

internal fluid mesh consists of linear tetrahedral elements.  However, it is well 

known that linear, constant strain triangles (CST) representing only membrane 

modes are inappropriate when used in three-dimensional geometries with 

transverse loads (see [65,66]).  Therefore, to stabilize the linear triangle, we 

augment the stiffness of the linear membrane element with a transverse shear as 

illustrated in Figure 3-2.  Note that using this approach, only translational 

degrees-of-freedom are needed to describe the dynamics of the vessel wall.  

 In order to correctly represent the plane stress behavior (enhanced with the 

transverse shear modes mentioned previously) for the linear surface triangles, one 
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must calculate the tensors given by equation (3.40) in a local reference system, 

coplanar with the triangle. 

 

Figure 3-2: Stresses of a typical membrane patch with transverse shear. 

 

The coordinate transformation between the global and local reference frames is 

given by the orthogonal matrix   whose components are (see Figure 3-3): 

 l
ij i je e           (3.41) 

where ie  and l
je  are the unit basis vectors of the global and local reference 

frames, respectively. 

 

Figure 3-3: Coordinate transformations between the Global, Local and Parent reference frames.  
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The rotated coordinates of the vessel wall nodes are: 

    ,  1 2 3      

l
a

l l l
a a a a

l
a

x

x x a , , ; x y

z



 
 
 

    
 
  

 (3.42) 

A similar operation must be performed to obtain the nodal displacements in the 

local reference frame l
au . Furthermore, the (local) strains l  are related to the 

nodal displacements by a matrix operator B  

 l lBu   (3.43) 

whose expression will be derived shortly. 

For isoparametric linear elements, the displacement field lu  is given by: 

  
3

1

 l l
a a

a

u N r,s u


  (3.44) 

Where  aN r,s  are the triangular shape functions given by 

 

1

2

3

1N r s

N r

N s

   







 (3.45) 

 Recalling that for a thin membrane we can neglect variations across the 

thickness (and therefore 0l
zz  ), and using the symmetries of C ,   and s , it 

is possible to work with a reduced vector (i.e., index-collapsed) form of these 
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tensors and a second-order tensor of material constants D  which relates the 

following local stress and strain vectors,  

           =

l

l

l l
xx

ll
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l l
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xy l l
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l l
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u v
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w
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 

 
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     

    
    

   
   

    
 
 

 

 (3.46) 

Here l lu ,v , and lw are the three components of the displacement vector lu  and 

,l lx y  are the local nodal coordinates. We now define the material stiffness tensor 

for a plane stress state of an incompressible, isotropic solid augmented by the 

transverse shear stresses l
xz  and l

yz . This tensor can be written as follows: 
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



 
 
 
   

  
 
 
 

 (3.47) 

where E  and   are the Young’s modulus and Poisson ratio coefficients 

respectively, and the parameter k  accounts for a parabolic variation of transverse 
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shear stress through the membrane.  For a solid, homogeneous plate this 

parameter takes the value of 5 6 ([65,66]).   

 Using a convenient finite element interpolation, and the index-collapsed 

tensors defined by equations (3.46)-(3.47), equation (3.40) will produce a local  

elemental stiffness matrix s,l
eK  for the vessel wall triangles of the form: 

 
e
s

s,l T
eK B DBds



   (3.48) 

We need to find expressions for the gradient of nodal displacements with respect 

to the local reference system l
ie , as expressed in equation (3.46).  Considering the 

interpolation given by equations (3.44)-(3.45), we can calculate the gradient of 

any component of the displacement field by using the following vector operator:  

 1 1
1 1 0

1 0 1

l

l

x rJ J

y s

 

    
       

              
     

 (3.49) 

where 1J   is  the inverse of the jacobian matrix relating the local and parent 

reference frames (see Figure 3-3).  For a linear triangle, these matrices are:  

 
2 1 2 1

3 1 3 1

l l l l

l l l l

x x y y
J

x x y y

  
 
  
 

 (3.50) 
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y y y y
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  
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  
 

 (3.51) 
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where Ae is the surface area of the triangular element under consideration.  The 

final expression for the gradient operator is as follows: 

3 1 1 2 2 3 3 1 1 2

1 3 2 1 3 2 1 3 2 1

1 1 01 1
1 0 12 2

l l l l l l l l l l
l

l l l l l l l l l l
e e

l

y y y y y y y y y yx

A Ax x x x x x x x x x
y

 
            
                     

  

 (3.52) 

We need to combine this expression for the spatial gradient with the right nodal 

values in order to generate the right components of the (local) strain vector l , 

viz. 
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 (3.53) 

where l l l
ij i jx x x   (similarly for l

ijy ). Using equations (3.43) and (3.53), it follows 

that: 
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 (3.54) 

and therefore the local elemental vessel wall stiffness matrix s,l
eK  can be 

expressed as the 9 9  matrix given by: 

  
e
s

ls T T
e eK B DB ds B DBA 



   (3.55) 

This local stiffness matrix must then be rotated back into the global reference 

frame using the 9 9  rotation tensor 

 

0 0

0 0

0 0







 
 

   
 
  

 (3.56) 

where   is the tensor given by equation (3.41). Therefore, the expression for 

global vessel wall stiffness s
eK  results in 

  s T s,l T T
e e eK K B DBA       (3.57) 

This matrix represents, under the assumptions described in this section, a 

convenient discretization for the integral term containing the vessel wall stress 

tensor  s u  in equation (3.34).  
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We proceed now with the description of the time integration and linearization 

schemes utilized in the formulation.  

 

3.4 Time Integration and Linearization Algorithms 

 The weak form given by equation (3.34) can be written as a semi-discrete 

system of nonlinear first-order ordinary differential equations in time: 

 

 


 


0    in 

                  on 

,t

,t s

R(u,v,v ,p)

v u

 (3.58) 

The vector R  represents the set of nodal nonlinear residuals defined for each 

point of the finite element mesh.  

 In order to describe the time evolution of the solution to this system, we need 

to introduce a suitable time integration strategy. Since the problem defined by 

equation (3.58) is nonlinear, a linearization algorithm is needed. Both operations 

–time stepping and linearization- are intimately related. 

 In this section, we describe these two algorithms as they have been 

implemented in the finite-element code PHASTA©[49]. The section is organized 

as follows: we first provide a basic description of the time stepping/linearization 

algorithms as implemented in PHASTA©[49]. We then proceed to characterize 
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the generalized-  method applied to a simple linear model problem. We then 

describe the generalized-  method applied to the CMM-FSI equations. Lastly, 

for the sake of completeness, we provide the expressions of the left-hand-side 

matrices obtained from the linearization scheme. 

3.4.1 Basic Steps of the Time Integration/Linearization Algorithms as 

Implemented in PHASTA© 

 Figure 3-4 shows the basic steps involved in the time integration/linearization 

algorithm. 

 

Figure 3-4: Time stepping and nonlinear iteration loops in the solution strategy. 

 

Here, the index n refers to the time step number, whereas the superscript (i) 

represents the nonlinear iteration counter. The superscripts a,b represent the 

local node numbers and the subscripts i,j the spatial dimensions. 
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Within each time step, there is a nonlinear iteration loop to obtain the solution 

at time nt  to the nonlinear system defined in equation (3.58) using a Newton-

Raphson strategy. It is important to define the way this equation is linearized to 

obtain a linear system of the type shown in Figure 3-4. We will provide the 

specific details of this linearization in section 3.4.3. 

 The system (3.58) can also be written as  

 A = 1,...,n
      

   
     

nodes

0
   ,       

0

m

c
AA

R

R
 (3.59) 

where mR  and cR  represent the residuals of the momentum and continuity 

equations, respectively: 
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Applying the Newton-Raphson method to equation (3.59) using the acceleration 

,tj
v  and time derivative of pressure ,tp  as linearization variables produces a 

system of the form: 
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 (3.62) 

The left-hand-side matrices shown in Figure 3-4 correspond to the partial 

derivatives of the momentum and continuity residual with respect to the 

linearization variables, as seen in the previous equation. Therefore, we have: 
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 (3.63) 

 However, due to considerations in the linear algebra package used (AcuSolve© 

[67]), it is highly desirable to have an anti-symmetric left-hand-side matrix (i.e., 

ab ba
j iD G  ). Gresho and Sani [59] provide additional details pertaining to this 

anti-symmetry. In order to make these two matrices anti-symmetric, a different 

definition of the continuity equation residual for the left-hand-side linearization is 
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utilized in PHASTA©. The Alternative Left-Hand-Side continuity residual is 

referred to as ALHS
cR  and its expression is given by: 

  
e1
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eln
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which differs from equation (3.61) in the fact that the continuity term has not 

been integrated by parts, and therefore it does not have any boundary integrals. 

Considering this, we re-define the system given by equation (3.62) as follows: 
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 (3.65) 

where  
a

i m
R , a

cR  and  
aALHS

cR  are given by equations (3.60), (3.61) and (3.64), 

respectively. 

 To better understand the different steps of this time stepping algorithm, we 

review briefly the basic features of the generalized-  method applied to a first 

order ODE, as described in [68]. 
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3.4.2 Generalized-  Method for a Simple ODE 

 The Generalized-  Method was first introduced by Chung and Hulbert [69]. 

It has been widely used in both structural and fluid mechanics problems, since it 

has a number of desirable properties. For a linear problem, it can be proven to be 

second-order accurate and unconditionally stable. It also enables the specification 

of user-defined numerical dissipation. We proceed to briefly describe the main 

features of this algorithm.  

We consider a linear model problem representative of the system given by 

equation (3.58): 

 ,ty y  (3.66) 

The generalized-  method for integrating (3.66) from nt  to 1nt  (with 

  1n nt t t ) reads as follows: 

Residual equation 

 
n fm
,t ny y

 
   (3.67) 

Kinematic equation 

   11 1
n nn n ,t ,ty y t y y 

       (3.68) 

Interpolation equations 

  1n n n nm
,t ,t m ,t ,ty y y y




 
    (3.69) 
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  1fn n f n ny y y y      (3.70) 

 The generalized-  method uses different time interpolations for the main 

variable y and its time derivative ,ty . The main variable y is interpolated in time 

using the parameter  f , see equation (3.70), whereas its time derivative ,ty  is 

interpolated in time using a parameter -m  (see equation (3.69)). The two 

interpolated variables are related by the residual equation (3.67). Finally, 

equation (3.68) relates the values of the variables at times 1nt  and nt  using a 

third parameter  . We can refer to this equation as the kinematic equation. 

It can be proven (see [68]) that second-order accuracy can be obtained so long as  

     
1

2 m f  (3.71)   

Unconditionally stability requires that  

   
1

2m f  (3.72)  

If we refer to the spectral radius (obtained in the limit of an increasing time step) 

of the system defined by equations (3.67)-(3.70) as  , then it is possible to 

express the parameters  f  and m  as a function of this spectral radius   and 

therefore get the desired amount of numerical dissipation. The expressions for  f  

and m  as a function of   are: 
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2 1m  (3.73)  

 
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


1

1f  (3.74)  

By specifying  , we can set the level of damping of the frequencies that are high 

relative to the resolution of the time discretization. If   is set to zero, then the 

algorithm annihilates the highest frequency in one time step (in a linear 

problem). The method has the same spectral stability as Gear’s two-step 

backward difference method [70]. On the other hand, if   is set to one, then the 

highest frequency, as well as the other frequencies, is preserved (again, in a linear 

case). This can compromise stability of the solution if the time discretization is 

not fine enough to resolve all the frequencies of the problem. In this case ( =1), 

the method corresponds to the midpoint rule. 

3.4.3 Generalized-  Method Applied to the CMM-FSI 

 As we have shown previously (see equation (3.62)), we have chosen to 

linearize the system given by equations (3.58)-(3.61) using Newton’s method in 

two variables: one vector (the acceleration ,tv ), and one scalar (the pressure time-

derivative ,tp ). 

 When applying the generalized-  method presented in section 3.4.2 to the 

system defined by equations (3.58)-(3.61), we can define residual, kinematic, and 
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interpolation expressions similar to those given for the simple ODE problem 

(equations (3.67)-(3.70)).  

 However, we must define the values of the generalized-  method parameters 

for each linearization variable: the velocity-acceleration parameters 

   ,  and f m vv v
 and the pressure parameters    ,  and f m pp p

.  

Considering this, the residual equation for the CMM-FSI problem becomes  

 1 0
f n f f nf m p f mv v

n n ,t n n n ,t nv vv v
R(u ,v ,v ,p ) R(u ,v ,v ,p )

              (3.75)  

The kinematic and interpolation expressions are given by: 

Velocity equations: 

    
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11 1

n nn n v ,t v ,tv v t v v  (3.76)  

  



 
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1n n n nvmv

,t ,t m ,t ,tv v v v  (3.77)  

      1f vn n f n nv
v v v v  (3.78) 

Pressure equations: 

The pressure time-derivative ,tp  does not appear explicitly in the incompressible 

fluid equations, but we can make the algorithm set the time-derivative to zero by 

choosing the pressure parameters corresponding to a Backward-Euler scheme: 

      1f m pp p
 (3.79) 
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By doing this, we obtain: 

   1 11 1
n n nn n p ,t p ,t n ,tp p t p p p tp 

           (3.80)  

  



 

  
1n n n npmp

,t ,t m ,t ,tp p p p  (3.81)  

      1f pn n f n np
p p p p  (3.82)  

Note that this choice will make the pressure and velocity parameters different in 

general. 

 These equations are completed with Newmark’s formula to relate the 

displacement field (defined only at the vessel wall-fluid boundary interface s ) 

with the velocity and acceleration fields: 

    



     

1

2

1 1 2 2
2 n nn n n ,t ,t
t

u u tv v v  (3.83)  

and the corresponding interpolation formula for n fv
u  

      1f vn n f n nv
u u u u  (3.84) 

 For the examples presented in Chapter 5, we have adopted  =1. A careful 

analysis of the influence of this parameter on the linear stability of the solution 

can be performed using methods described in [65]. We now provide the expression 

of the linearized Left-Hand-Side matrices. The terms that we have chosen to 
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include are essentially formed from the “frozen coefficient” assumption while 

differentiating the equations: 
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 (3.85) 
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 (3.86) 
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 (3.87) 

 

 
 

 
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 (3.88) 
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 In the previous expressions, aN  and bN  refer to the shape functions of local 

nodes a and b, respectively, whereas ie  represents the ith Euclidean basis vector 

for  sdn . Indices between parentheses indicate that no summation over the index 

is carried out. 

 The matrices ab
iG  and ab

jD  are not anti-symmetric (see equations (3.86) and 

(3.87)), since the generalized-  method parameters for velocity and pressure are 

different. To make these matrices anti-symmetric, we can multiply ab
iG  (and 

abC ) by the factor 
vf v

   and divide  
1

b

,t n
p


  by the same factor, viz. 

 

 
 

 

 1

1

,t

v

v

v

b

aab ab j
nij f v i i mb

aab ab ,t n cj f v

f v

v
K G R

p RD C

 

 
 





 
       

             
  

 (3.89) 

We can also write this system as: 

 
 

 

 
1

1

,t

b
aab ba

jij i i mn
abab ab
cj

,t n

vK D R

RD C p





              
          

 (3.90) 

or, alternatively as: 

 
 

 

 
1

1

,t

b
aab ab

jij i i mn
abba ab
cj

,t n

vK G R

RG C p





              
          

 (3.91) 

where  
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  
 

1
1

       ,      
v

v

b
b ,t ab abn

,t f vn
f v

p
p C C 

 





    (3.92) 

 We now provide the expressions of the different parts of the time stepping 

and nonlinear iteration loops as seen in Figure 3-4 for the CMM-FSI. 

Predictor Phase 

    
 

 
00

1 1

1
      ,      0p

n n ,t ,tn n
p

p p p p



 


    (3.93) 

    

1

0 0
1

1
      ,      

n n

v
n n ,t ,t

v

v v v v





   (3.94) 

  
2

0
1

2

2 n

v
n n n ,t

v

t
u u tv v

 




 
     (3.95) 

Multi-corrector Phase 

         1 1
1 1 1   

f pp

i ii i
n n f n n n n np p p p p p p   
          (3.96)  

  
 

   
 

    
 

 
 1 1

1 1 1
   0

pmp

i i i i

,t ,t m ,t ,t ,t ,tn n n n n n
p p p p p p




 

   
       (3.97)  

     1
1f vv

i i
n n f n nv v v v  
     (3.98)  

     1

1
n n v n nmv

i i
,t ,t m ,t ,tv v v v




 

    (3.99)  

     1
1f vv

i i
n n f n nu u u u  
     (3.100)  
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Residual Evaluation/Linear Solve 

                    
1 0

f f n f p f f nv v m v v mv v

i i i i i i i i i i
n n ,t n n n ,t nR (u ,v ,v ,p ) R (u ,v ,v ,p )

             (3.101)  

 
 

 

 
1

1

,t

b
aab ab

jij i i mn
abba ab
cj

,t n

vK G R

RG C p





              
          

 (3.102)  

This linear system is solved with the AcuSolve© [67] iterative solver, which 

features a GMRES solver for the velocity equation and a Conjugate Gradient 

solver for the pressure equation. 

Update Phase 

      

1 1 1

1
n n n

i i i
,t ,t ,tv v v

  

     (3.103)  

      

1

1
1 1 n

i i i
n n v ,tv v t v




      (3.104)  

      

1

1 2
1 1 n

i i i
n n ,tu u t v




      (3.105)  

          

1 1 1 1 1

1
n n n n v n

ii i i i
,t ,t ,t ,t f v ,tp p p p p 

    

        (3.106)  

          

1 1

1
1 1 1n v n

ii i i i
n n p ,t n f v ,tp p t p p t p  

 


           (3.107)  
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3.4.4 Summary of the CMM-FSI Additions to the LHS Matrices and RHS 

Vectors of Rigid Wall Formulations 

 To finalize the description of the CMM-FSI method, we present the list of 

additions to the left-hand-side matrices and right-hand-side vectors presented in 

equations (3.65) with respect to those present in rigid wall formulations: 

Right-hand-side vectors:  

      
 

       :
s h

rigid s s s
m m ,tR R w v w u ds w h dl  (3.108) 

 


    
s

rigid
c c nR R qv ds  (3.109) 

Left-hand-side matrices: 

        
 

       
2

s se e

rigidab ab s a b T T
ij ij m ij f i jK K N N ds t e B DB ds e  (3.110) 

  
rigidab ab

i iG G  (3.111) 

  
rigidab ab

j jD D  (3.112) 

  
rigidab abC C  (3.113) 
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As previously stated, the additional terms of the CMM-FSI method shown in 

equations (3.108)-(3.110) represent relatively minor changes to standard finite 

element formulations for solving the incompressible Navier-Stokes equations.  

3.5 Initialization of the Algorithm 

 We conclude the description of the CMM-FSI by providing a few remarks on 

initialization of the different field variables.  

 For a rigid wall problem, only the velocity field requires initial conditions. 

However, for a deformable wall problem, initial values for the displacement and 

velocity fields at the fluid-solid interface are needed as well, as given by equation 

(3.23). It is important for the stability of the solution that the fluid-solid system 

departs from an initial state representing equilibrium. To accomplish this, the 

wall velocity is initially set to zero. As for the wall displacement field 0u (x ) , it is 

assigned such that its associated stress state st  is in equilibrium with the fluid 

traction ft , as described by equation (3.26). This condition is prescribed using 

the following algorithm: 

1. A (steady) rigid wall problem is solved first, using the same inlet and outlet 

boundary conditions as for the deformable wall problem. The velocity 0v (x )  and 

pressure  0p x  fields obtained are then used as initial conditions for the 

deformable wall problem. 
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2. The vessel wall is loaded with a body force sb  normal to the wall with a 

magnitude obtained from the average value  of the rigid wall pressure field 

 0p x : 

 


s
n

b  (3.114) 

This body force represents the exact load for the vessel wall in a hydrostatic case. 

This can be proven by particularizing the expression of the weak form of the 

CMM-FSI defined by equation (3.34) for a hydrostatic case (viz,  , 0tv v , 

0  ), considering that no body forces and external tractions act on the system. 

Under these assumptions, and using the divergence theorem, equation (3.34) 

reduces to: 

   
 
   :
s s

sw u ds w ndx  (3.115) 

This equation shows that the stresses of the vessel wall   s u  balance the 

traction at the fluid-solid interface and provide the condition to find the initial 

displacement field 0u (x ) .   

 Once the values for 0v (x ) ,  0p x  and 0u (x )  have been obtained, the 

deformable wall problem is run under the same steady flow conditions used for 

the rigid wall initialization until the solution is sufficiently converged (typically, 

with residuals on the order of 510 ) and then the pulsatile simulation is started. 
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3.6 Consistent Calculation of Boundary Fluxes 

 Traditionally, the boundary fluxes like the wall traction or wall shear stresses 

are evaluated by substituting the computed flow quantities and their derivatives 

into the definition of these fluxes. Thus, for the total wall traction, we would 

simply insert the computed velocity and pressure fields into the equation 

  nt n pI n      (3.116) 

whereas for the wall shear stress we use  the in-plane component of the viscous 

stress traction given by the equation: 

   Tn n v v n        (3.117) 

Although this classical method may provide adequate results, it does not utilize 

all the information available in the variational form of the problem. It is possible 

to use the variational form and obtain a so-called variationally consistent 

boundary flux, as seen in [65] and [62]. In the references, a simple method to 

obtain these variationally consistent fluxes is described for the case of rigid wall 

flows, where the velocity on the lateral boundary of the fluid domain (which is 

part of the g  boundary) is zero. A new space of weighting functions k
hW  is 

introduced such that 

 1 0sd sd

e
ge

k n n
h k gx

ˆ ˆ ˆw w( ,t) H ( ) ,t [ ,T ],w P ( )


 
       
 

W  (3.118) 
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Note that k
hW  defines a space of test functions ŵ  that are different from zero 

only on g , where the wall shear stress is to be reconstructed. The variational 

form of the problem is re-written using this new weighting space and the known 

pressure, p and velocity, v . 

 In the case of a deformable wall formulation, we have a space of non-zero 

functions defined exclusively on the lateral fluid boundary s : this space is 

basically the vessel wall weighting functional space given by equation (3.29). 

Therefore, we can write the CMM-FSI variational form using this space as:  

Given k
hv  , , k

hp q   and s k
hw , find s k

h
ft  such that 

    

   

    
1

:

                        +    

                        +

            

h s g

el

e

,t

f
n n n

n

M C
e

B(w,q; v,p) w v v v f w pI q v dx

w h qv ds w t qv ds qv ds

v w v,p w v dx

  

 



  




            

       

       



  



        
 

e

1

1

            +

                        + 0

el

e

el

n

e
n

M

e

w v v v,p w v,p v dx

q v,p dx

 













      

  





 (3.119) 

This equation is of the same form as equation (3.34), with the wall traction ft  

replacing the vessel wall terms as given by equation (3.32), which gives the vessel 

wall traction as a function of wall stiffness, mass, and boundary conditions. In 

equation (3.119), the only unknown term is the one containing the wall traction 

ft . Therefore, the equation can be re-written as follows: 
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(3.120) 

The solution to equation (3.120), using the functional spaces defined previously 

provides the variationally consistent total traction ft . With this, the shear stress 

vector is obtained by subtracting the normal traction, viz: 

  f f
n t t n n     (3.121) 



 

 

Chapter 4 

Chapter 4. Verification of the Method 

4.1 Introduction 

 Verification and Validation (V&V) in computational science and engineering 

is the subject that deals with evaluating the reliability and accuracy of the results 

provided by computer models of physical processes [71]. More specifically, 

Verification is the science that addresses the quality of the numerical treatment 

of some mathematical model. This involves two different components: 

- Code verification: the process of determining if a code faithfully 

implements a computational model.  

- Solution verification: this is concerned with the numerical accuracy with 

which the mathematical model is approximated by the computer model. 
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On the other hand, validation of a computational model involves the comparison 

of the results predicted by the model with those observed in the physical world. 

It follows then that when developing a computational model, verification should 

precede validation as a necessary step to address the reliability of the model. 

Once this reliability is verified, the code can be validated by solving real-world 

problems, and comparing the quality of the solutions provided by it with 

experimental measurements. 

 In this chapter, we address the verification of the CMM-FSI as a 

computational model of Womersley’s deformable wall mathematical model.  

  

 

 

 

 

 

 



CMM-FSI AS A COMPUTATIONAL MODEL OF WOMERSLEY’S ANALYTICAL 

SOLUTION FOR PULSATILE FLOW IN A CYLINDRICAL DEFORMABLE VESSEL 
103 

 

 

4.2 CMM-FSI as a Computational Model of Womersley’s Analytical 

Solution for Pulsatile Flow in a Cylindrical Deformable Vessel 

 Choosing the parameters defining Womersley’s deformable analytical solution 

is a task that must be performed carefully. On the one hand, we must choose the 

set of parameters such that the main approximation of the theory (i.e., the long 

wave assumption) holds in the numerical solution as well. This implies: 

 , 1
R w

L c
 (4.1) 

 On the other hand, we would like to minimize the computational cost of the 

numerical solution, by keeping the length of the vessel as small as possible.  

 For clarity, we consider just one single frequency   in the oscillatory part of 

the analytical solution. We proceed now to describe the set of values that define 

this solution: 

- We first choose the radius, wall thickness, Young’s modulus and Poisson’s 

ratio corresponding to the common carotid artery. We have: R = 0.3 cm,  

h = 0.03 cm, E = 62 10  dyn/cm2 and 0.5  . We consider a value of 

0.04   poise for the kinematic viscosity of the blood. The densities of 

the blood and the wall are both set to 1. 
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- Inviscid wave speed. Given the material parameters presented above, the 

inviscid wave speed is given by the Moens-Korteweg equation: 

 

          0 316.2278 cm/s
2

Eh
c

R
   (4.2) 

- Period of the oscillatory component of the solution: 2T   s. This 

generates an angular frequency of 4   rad/s and a Womersley number 

of 3  , which is in the moderate range for human arterial flows. 

- Input steady pressure gradient ( 53.33sk    dyn/cm3). 

- Input oscillatory pressure gradient ( 50.0k A     dyn/cm3). Considering 

this, the resulting input pressure gradient is shown in Figure 4-1. 

- The inlet pressure gradient depicted in Figure 4-1  is the boundary 

condition prescribed to obtain the analytical solution, which is defined in a 

semi-infinite domain (from z=0 to z= ). With the inputs specified above, 

we can obtain the basic parameters governing the analytical solution: 

o Complex wave speed 270.68 67.45c i   cm/s 

o Input oscillatory pressure amplitude 842.82 3,383.5H i   dyn/cm2  

o Characteristic length of the vessel (it represents a complete spatial 

wave for the frequency   considered above) 451.6RL c T   cm 
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Figure 4-1: Total input pressure gradient over the cardiac cycle. 

  

 We proceed to provide the plots of the velocity and pressure solutions 

obtained with the parameters given above, for a vessel of length L = 451.6 cm. 

 Figure 4-2 shows the longitudinal velocity profiles along the length of the 

vessel, at different times of the cardiac cycle. We can observe the periodicity of 

the solution in space (with period L) and time (with period T). In both cases, the 

frequency of the oscillation is given by  . 
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Figure 4-2: Longitudinal velocity profiles showing the periodicity of the velocity waves in space and time. 
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 Figure 4-3 shows the radial velocity profiles at the vessel wall (r=R), along 

the length of the vessel, at different times of the cardiac cycle. The same periodic 

behavior in space and time is observed as well. Note that the maximum 

magnitude of the radial component of the wall velocity (0.02 cm/s) is much 

smaller than its longitudinal counterpart (on the order of 1.75 cm/s, as we will 

see later).  

 As for the pressure solution, Figure 4-4 represents the time evolution of the 

total pressure at different sections along the length of the vessel (considering a 

mean inlet pressure of 100 mmHg = 133,333 dyn/cm2). We can observe that the 

pressure field is also periodic in time, and the oscillatory component of the 

pressure shows the same phase at z=0 and z=L. Furthermore, the total mean 

pressure decreases for larger values of z, according to the prescribed input steady 

pressure gradient. 

 Figure 4-5 shows the pressure variation along the length of the vessel at 

different points of the cardiac cycle (t=0, T/4, T/2 and 3T/4). We again observe 

the linear variation of the steady component of the pressure, as well as the 

changes in phase of the oscillatory component over the cycle. 
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Figure 4-3: Radial velocity profiles at the vessel wall (r=R). 
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Figure 4-4: Total pressure at different cross sections of the vessel as a function of time. 

 

 
Figure 4-5: Total pressure along the length of the vessel at different points of the cardiac cycle. 
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4.2.1 Boundary Conditions for the Numerical Solution 

 When comparing the results obtained with the CMM-FSI formulation and 

Womersley’s elastic wall solution, one must put considerable care into the 

specification of the boundary conditions for the numerical test, since by definition 

the numerical domain is of finite length, and the analytical solution is defined in 

a semi-infinite domain. Furthermore, and as pointed out before, one wants to 

minimize the length of the numerical domain, since it will directly impact the 

cost of the simulation. Therefore, we have adopted a vessel much shorter than 

the one given by the characteristic spatial wavelength L 452  cm. The 

considered length of the vessel for the numerical domain is l = 4 cm. 

 The most delicate point is the specification of the outflow boundary condition 

(z = l ). We need to replicate the behavior of the waves traveling forward in the 

semi-infinite analytical domain, without experiencing any reflections. To 

accomplish this, we prescribe the analytical expression of the flow impedance 

function Z(t) (see [24,72]) for the lumen nodes, and the velocity vectors (with 

both radial and longitudinal components) for the wall nodes. For the inlet 

condition (z = 0), we prescribed the three components of the velocity vectors 

given by equations (2.133)-(2.134). Figure 4-6 shows schematically the set of 

boundary conditions applied to the numerical domain: 
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Figure 4-6: Inlet and outflow boundary conditions prescribed in the numerical domain. 

 

 The outlet impedance function Z(t) is obtained as follows: 

- First, we obtain the outlet total pressure  p t . 

- Second, we derive the expression for the flow at the outlet face. This 

expression is given by 

               
4 2

0

2 , , 1
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       (4.3) 

where g is given by equation (2.109). The pressure and flow rate waves at 

z=l  are depicted in Figure 4-7. As can be observed, these two waves are 

not in phase: the pressure lags the flow wave, as often observed 

physiologically. 
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Figure 4-7: Pressure and flow waves at z = l. 

  

- We then proceed to obtain the Fourier decomposition of the pressure and 

flow waves: kp  and kQ . 

- The impedance function can be obtained in the Fourier domain as the 

ratio of the pressure and flow modes for each frequency:  

          ,   k=0,1,...k
k

k

p
Z

Q
  (4.4) 
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- In this problem, the pressure and flow (and therefore the impedance) 

waves only have two modes (corresponding to the steady state mode and 

to the frequency  ). Therefore, we have to truncate the modes of the 

impedance for k>2, since kQ  is zero and therefore equation (4.4) is not 

defined. The Fourier decomposition of the pressure, flow and impedance 

can be seen in Figure 4-8. 

- The impedance function in the time domain can then be obtained via the 

inverse Fourier transform of the impedance modes in the frequency 

domain kZ  (see Figure 4-9). 
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Figure 4-8: Fourier modes of pressure, flow and impedance at z = l. 
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Figure 4-9: Impedance function at the end of the numerical domain (z = l). 

 

4.2.2 Initial Conditions for the Numerical Solution 

 Initial conditions for the numerical analysis must be set with the same care 

used for the boundary condition specification in order to minimize the impact of 

initial transients in the system due to lack of equilibrium in the solid-fluid 

interface. This is particularly important when the wall is represented as an elastic 

solid, since in this case there is minimal physical dissipation in the system. To 

initialize the problem, we follow the steps sketched in Section 3.5: 

1. Steady analysis with rigid walls. This step provides the steady pressure 

distribution. 
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2. Obtain the deformation of the structure under the steady pressure 

distribution. With this information, we compute the initial values for the 

wall stress/displacement fields. 

3. Steady analysis with deformable walls.  

4. Pulsatile analysis with deformable walls. 

 In order to eliminate transients in the numerical solution, we have prescribed 

the initial flow, pressure and wall inlet/outlet ring velocities at a physical time t 

such that the velocities of the inlet and outlet wall rings are as close to zero as 

possible. The reason for doing this is because in step 2 of the initialization the 

inlet and outlet nodes of the wall mesh are held fixed. Figure 4-10 shows the way 

we have obtained this initial time t = 0.5184 s. The flow and outlet pressure 

corresponding to this time are Q = 5.449 cm3/s and P = 135,746 dyn/cm2. 

 For the results provided in the following section, we have considered a change 

of variables for the time defined as t* = t – 0.5184. By doing this, the solutions 

start at the physical time t = 0.5184 described above. In the discussion part of 

this section, we will provide an example that illustrates the impact of the choice 

of the initial time in the numerical simulation. 

 Lastly, we have also made use of the analytical theory to obtain the initial 

flow history required for the impedance boundary condition. 



CMM-FSI AS A COMPUTATIONAL MODEL OF WOMERSLEY’S ANALYTICAL 

SOLUTION FOR PULSATILE FLOW IN A CYLINDRICAL DEFORMABLE VESSEL 
117 

 

 

 

Figure 4-10: Initial time for the numerical solution obtained in such a way that the longitudinal velocities of 

the inlet and outlet wall rings are as small as possible. 
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4.2.3 Comparison of the Numerical and Analytical Solutions 

 We have run the numerical test for five cardiac cycles, using a time step size 

of 37.854 10t     s. The solution was obtained using a 19,267-node, 97,030-

element isotropic finite element mesh. 

 

 Figure 4-11: Longitudinal velocity profiles at the central cross section of the vessel at different times 

during the cardiac cycle. 
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Figure 4-11 shows the velocity profiles at the central cross section of the vessel  

(z = 2) at different points of the cardiac cycle. We have chosen this cross section 

since it is the farthest away from the boundaries, and therefore experiences the 

smallest impact coming from the boundary conditions. We can observe how the 

fluid velocity at the wall oscillates around a zero mean, showing negative values 

at t* = T/4 and positive values at t* = 3T/4.  

 Figure 4-12 shows the comparison between the analytical and numerical 

longitudinal velocity profiles at the central cross section at different points during 

the cardiac cycle. The two solutions compare extremely well, and demonstrate 

that the CMM-FSI can accurately reproduce the results of Womersley’s 

deformable wall theory. This is expected, since both theories use the same thin-

wall assumption to define the body force driving the motion of the wall from the 

fluid-wall interface traction field (see equation(3.27), and Section 3.2.4). 

 We can observe the time periodicity of the solution. During the first part of 

the cycle (0<t*<T/2), the fluid velocity at the wall is negative, and the flow rate 

decreases. During the other half of the cycle, the fluid velocity at the wall is 

positive, and the flow rate increases. 

 Figure 4-13 shows the comparison between the analytical and numerical flow 

and pressure profiles at the outlet section of the vessel. We can observe that the  
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Figure 4-12: Comparison between the analytical and numerical longitudinal velocity profiles at the central 

section of the vessel (z=l) at different times during the cardiac cycle. 
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Figure 4-13: Comparison between the analytical and numerical flow and pressure at the outlet of the vessel. 

 

agreement between the solutions is also excellent. The small differences come 

from errors in the post-processing of the solution when computing the flow rate in 

the areas close to the wall (these areas now have non-zero velocity values). 
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4.3 Discussion 

 In this chapter, we have verified the CMM-FSI, by comparing its results with 

those given by Womersley’s mathematical model of pulsatile blood flow in a thin-

walled deformable cylindrical vessel. We have seen that the level of agreement 

between the analytical and the numerical solutions is excellent.   

 As predicted by the analytical theory, we have observed elevated values for 

the longitudinal fluid velocity at the wall (approximately 1.5 cm/s). This 

longitudinal velocity is much larger than its radial counterpart (0.02 cm/s, Figure 

4-3). This is certainly a non-physiologic behavior, since it generates vessel wall 

longitudinal motion patterns that have not been observed. Womersley tried to 

correct this response by modifying his basic theory, incorporating a number of 

improvements to represent the effects of the surrounding tissue on the vessel wall 

itself (added mass, stiffness, viscoelasticity, longitudinal elastic constraints, 

etc.)[73]. These additions try to account for the fact that vessel walls are not just 

elastic conducts surrounded by air, but on the contrary, they are attached to, 

and supported by, other tissues. With these modifications to his original 

mathematical model, Womersley improved the level of fidelity of the results 

provided by the theory. We expect the same behavior once these features are 

taken into account in our model. However, obtaining the values characterizing 

the mechanical properties of the tissues surrounding the vessels will require the 
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utilization of either ex-vivo experimental techniques or noninvasive elastography 

techniques [74] based on medical images. 

  In the next chapter, we proceed to apply the method to a number of different 

problems, ranging from small, ideal geometries, to large, patient-specific models 

of the vasculature. 



 

 

Chapter 5 

Chapter 5. Applications of the Method 

5.1 Introduction 

 In this chapter, we present a number of examples that illustrate different 

important characteristics of blood flow in deformable vessels. The first three 

examples correspond to idealized models of various arteries. The simplicity of the 

geometries will help to illustrate concepts like wave propagation, effect of 

boundary conditions, and basic patterns of flow, pressure and wall motion. 

 The next four examples correspond to large patient-specific models of the 

cardiovascular system. These examples illustrate the application of the Coupled-

Momentum Method to the solution of clinically-relevant problems, both from 

surgical planning and disease-research perspectives. 
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 For each example, we provide the characteristics of the finite element mesh 

and time discretization, as well as the material parameters and boundary 

conditions considered.  

   

5.2 Blood Flow in an Idealized Model of a Carotid Artery-I: 

Differences between Rigid and Deformable Wall Solutions 

 We first study the application of the method to a simple cylindrical model of 

the common carotid artery. The nominal radius and vessel length chosen are 0.3 

cm and 12.6 cm, respectively (see Figure 5-1)  

 

Figure 5-1: Geometry of the idealized model of the common carotid artery. 

 

For the inlet, we prescribe a pulsatile periodic flow wave –with a period of T=1.1 

seconds, mapped to a parabolic velocity profile ([25,75,76]). For the outlet, we 

prescribed an impedance boundary condition as described in [24,72]. The different 

parameters of the mesh, boundary conditions and material constants are given in 

the following table: 
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# of 

elements 

# of 

nodes 

T 

(s) 
Outlet BC 

t 

(ms) 

E 

(dyn/cm2) 
s 

(g/cm3) 
 (cm)   (g/cm3) 


(dyn/cm2) 

45,849 9,878 1.1 Impedance 0.8 4.07E+06 1.0 0.03 0.5 1.06 0.04 

Table 5-1: Mesh, boundary conditions and material constant parameters used for the idealized model of a 

common carotid artery. 

 

 The solutions were obtained after running the problem for a total of 3 cardiac 

cycles.  The Young’s modulus of the vessel wall was chosen such that a maximum 

deformation of 5 % was obtained with a physiologic range of pressures [77]. The 

values of the material parameters presented in Table 5-1 are all physiologically 

realistic. 

 The wall is fixed by constraining the degrees-of-freedom of the nodes located 

at the inlet and outlet rings. These are the only constraints applied on the 

structure. All the nodes of the wall are allowed to move in any direction, 

including longitudinally, due to the interaction with the internal blood flow. 

 In this problem, we compare the rigid and deformable solutions obtained 

using the same boundary conditions. The differences in both the pressure and 

flow waves between the rigid and deformable wall solutions are discernible, as can 

be observed in Figure 5-2. 

 For the pressure field, the pressures obtained with the rigid wall 

approximation present a higher pulse pressure value. This is a well-known 

phenomenon in the cardiovascular system, as stiffer vessels tend to experience 
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higher pressure pulses [25], showing larger values in systole and lower in diastole. 

For the example shown here, the pressure pulse at the inlet face obtained with 

the rigid wall theory is   107.51 -  81.95  25.56 rigidp mmHg, whereas the 

pulse obtained with the deformable theory is deformablep  = 104.81 - 84.85 = 19.96 

mmHg.  This represents a difference of 5.60 mmHg (22%), quite significant in a 

vessel with a simple geometry. 

 As for the flow waves, the differences are also noticeable. First of all, for the 

rigid wall model, the inlet and outlet waves are identical as is expected for an 

incompressible fluid in a rigid domain. However, for the deformable model, while 

the prescribed inflow is identical to the flow of the rigid case, there is a noticeable 

phase lag between the inlet and outlet flow waves. 
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Figure 5-2: Pressure and flow waves at the inlet and outlet faces of the carotid artery model obtained with 

rigid wall and deformable wall approximations, prescribing the inlet flow and impedance outlet conditions. 
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 This phase lag provides a means to estimate the pulse speed. The phase lag is 

approximately 0.024 seconds. Considering the vessel length (L = 12.6 cm), this 

produces a pulse speed of approximately 525 cm/s. This is in good agreement 

with the Moens-Korteweg estimate for pulse speed [77] in an inviscid system 

given by  

 


0 2

Eh
c

R
 (5.1)  

which, for the parameters considered in this problem, produces a wave speed of 

approximately 451 cm/s. 

 The flow distribution is also different during systole and diastole. The outlet 

flow in the deformable case is larger in diastole, because it receives the extra flow 

that is ‘stored’ in the vessel during systole. This is a fundamental process in the 

cardiovascular system, since the deformability of the vessels enables them to store 

flow during the systolic stage of the cycle and then release it during diastole. 
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5.3  Blood Flow in an Idealized Model of a Carotid Artery-II: 

Impact of Different Boundary Conditions 

In this problem, we compare the solutions obtained for the same geometry, 

mesh and material properties described in section 5.2 using three different types 

of outlet boundary conditions: constant pressure, resistance and impedance as 

described in [24,72]. In Figure 5-3, we present the results obtained for average 

pressure over the cross-section, flow and relative radial displacement at two 

sections, S1 and S2, placed a distance of 0.6 cm from the inlet and outlet faces, 

respectively. We have chosen these locations since they are far enough from the 

inlet and outlet (where the nodes on the wall are kept fixed) so the radial 

deformation is not affected by the presence of the boundary. We define the 

relative radial displacement as the radial displacement minus its value at the 

beginning of the cardiac cycle. 

5.3.1 Impedance Outlet Boundary Condition 

For the impedance boundary condition, we observe the same results as in the 

problem studied in section 5.2: the pressure and flow waves have realistic 

amplitudes and phase lag, due to the combined action of the outlet boundary 

condition and the deformability of the wall.  
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The relative radial displacement waveforms closely follow the shape of the 

pressure waveforms at both locations, as expected when using an elastic 

constitutive model. The maximum radial deformations due to the pulsation of the 

flow at S1 and S2 are  1 0.0140Sr cm and   2 0.0145Sr  cm, and the 

maximum circumferential strains  1 4.67%S  and   2 4.81%S . 

5.3.2 Resistance Outlet Boundary Condition 

For the resistance boundary condition, the pressure and relative radial 

displacement waveforms, as well as the flow waveform at S2 look dramatically 

different. On the one hand, the pressure waveforms do not show either a 

physiologic amplitude or phase lag with the flow, since outlet pressure is 

prescribed simply by scaling the outflow wave by the resistance (20,500 

dynes  s  cm-5: this resistance corresponds to the zero-frequency component of the 

impedance function used in the previous case). This generates unrealistically high 

pressure pulses ( S1

resistance  136.83 - 72.73 64.10p mmHg) and relative radial 

deformations ( 1 0.0449Sr  ,  1 14.93%S ). Furthermore, the shape of the flow 

wave at S2 is drastically changed as well, since the much larger pressure pulse 

alters the flow distribution between systole (when more blood volume is ‘stored’ 

in the vessel) and diastole (where this volume is released through the outlet face). 

These results are similar to those obtained by Vignon and Taylor [72] using a 
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one-dimensional nonlinear formulation for blood flow in deformable domains, and 

similar geometry and boundary conditions. 

5.3.3 Constant Pressure Outlet Boundary Condition 

The constant pressure case presents even more dramatic differences in the 

solution fields with respect to the impedance boundary condition, especially in 

the pressure and relative radial deformation. Since a constant pressure is imposed 

at the outlet (100 mmHg), the pressure field is fairly constant both spatially and 

temporally. The pressure pulse at S1 is S1

constant P  108.22 - 98.50 9.72p mmHg.  

The corresponding maximum radial deformation is now only   1 0.0076Sr  cm 

and  1 2.55%S . The flow wave at S2 is once again considerably changed by the 

effects of the pressure waves and the deformability of the vessel. 

 These examples illustrate the tremendous impact of different boundary 

conditions when considering wall deformability. The added fidelity in 

representing the different physical phenomena obtained by modeling wall 

deformation must be accompanied by a carefully chosen set of boundary 

conditions in order to obtain physiologically realistic solutions. 

 



BLOOD FLOW IN AN IDEALIZED MODEL OF A CAROTID ARTERY-II: IMPACT OF 

DIFFERENT BOUNDARY CONDITIONS 
133 

 

 

 

Figure 5-3: Pressure, relative radial displacement and flow waves in sections S1 and S2 of the carotid artery 

model, obtained using impedance, resistance and constant pressure outlet boundary conditions.  

(1 mmHg = 133 Pa, 1 cc/s = 10
-6

 m
3
/s). 
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5.4 Blood Flow through an Idealized Carotid Artery Stenosis Model 

 In this section, we consider an idealized model of a stenosed carotid artery 

with the same length and nominal radius as the example presented before. We 

consider two different scenarios: first, we study a model with a 75% area-

reduction stenosis (stenosis diameter sD 0.3cm) whose central section is 2.5 cm 

downstream from the inlet face (see Figure 5-4 for details). In the second case, we 

increase the level of stenosis to 88% area-reduction (stenosis diameter 

sD 0.2 cm). 

 The problem presented here may be useful to study a phenomenon called 

post-stenotic dilation. This phenomenon consists of the enlargement of the blood 

vessel downstream of the stenosed segment of the artery. Boughner and Roach 

hypothesized that this enlargement is due to the response of the vessel wall to 

induced oscillations in pressure and flow at frequencies higher than those 

observed ordinarily in healthy vessels [78]. 

5.4.1 Fluid-Solid Interaction in a 75% Area Reduction Stenosis 

 The geometry considered here is the lower-bound of a “critical stenosis”, 

which refers to area reduction levels of 75% and beyond. More severe levels of 

restriction are usually symptomatic and often require an intervention. We use the 

same outlet impedance boundary condition, and the same material properties for 
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the blood and vessel wall as in the problems studied in sections 5.2 and 5.3. The 

geometry is relatively simple, but the challenging aspect of this problem is the 

fact that relatively high Reynolds numbers do occur during the cardiac cycle at 

the level of the stenosis (maximum Reynolds number at peak systole is 2100). 

The flow is transitional (e.g. during systole, the flow velocities increase enough to 

make the jet at the stenosis transition from laminar to turbulent flow) and non-

axisymmetric, and it generates high-frequency loading on the vessel wall. It is 

beyond the scope of this work to explore the transitional turbulence produced in 

cases like this. No claims are therefore made regarding the resolution of this 

phenomenon. 

 

Figure 5-4: Geometric details of the idealized carotid artery stenosis model, and the sections proximal and 

distal to the stenosis where average pressure, radial wall displacement and flow are computed. 

 

 The solution was obtained using a 132,118 element and 26,536 node mesh 

with a time step of 0.25 ms, and six nonlinear iterations for a total of three 
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cardiac cycles. Figure 5-5 shows the mean pressure and flow waves at the inlet 

and outlet faces of the model. The pressure waves are remarkably different from 

the un-stenosed model, especially the inlet pressure. The pressure drop along the 

vessel length is approximately 2 mmHg during most of diastole, but reaches a 

maximum value of 13.20 mmHg at peak systole. This is due to the losses 

occurring at peak systole in the stenosis section. The flow waves are similar to 

those of the healthy carotid model, as expected from a model of a single vessel 

with a prescribed inlet flow. 

 Figure 5-6 shows the results obtained for the pressure averaged over the cross-

section, flow and relative averaged radial displacement at two sections, S1 and 

S2, placed a distance of 1.5 cm from the central section of the stenosis. The 

pressure waves show a maximum pressure drop of 15.72 mmHg at peak systole. 

This pressure drop is larger than the pressure drop between the inlet and outlet 

faces demonstrated previously: this is due to the adverse pressure gradient 

experienced by the blood flow in the stenosis. 

 The averaged relative radial displacement is obtained by averaging the radial 

component of the relative radial displacement for the wall nodes located at each 

section. These plots follow the shape of the average pressure curves at both 

sections. On average, the displacements are larger upstream of the stenosis, 

especially during systole due to the larger values of pressure. However, the largest 
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instantaneous radial displacements occur downstream of the stenosis due to high-

frequency oscillations in the velocity field at this location. This can be observed 

in Figure 5-7, where we present the spatial distribution for pressure, wall velocity 

and blood velocity at two points of the cardiac cycle: peak systole and mid-

diastole. The maximum pressure drop occurs between the inlet face and the 

central section of the stenosis, with a value of approximately 30 mmHg at peak 

systole. The vessel wall velocity plots show the high-frequency effects of the flow 

 

Figure 5-5: Pressure and flow waves at the inlet and outlet faces of the stenosed carotid artery model 

obtained using impedance outlet boundary conditions and a deformable wall. 
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field on the structure, especially downstream of the stenosis, where the highest 

wall velocities occur. These high-frequency velocity oscillations give rise to the 

largest instantaneous wall displacements mentioned earlier. Lastly, the blood 

velocity plots show the complex patterns occurring downstream of the stenosis, 

especially during systole, where the velocity in the stenosis reaches maximum 

values over 200 cm/s.   

 

Figure 5-6: Pressure, relative radial displacement and flow waves in sections S1 and S2 of the stenosed 

carotid artery model, obtained using an impedance outlet boundary condition and a deformable wall. 
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Figure 5-7: Pressure, wall velocity and blood velocity fields at peak systole (above) and mid-diastole 

(below) for the stenosed carotid artery model. 1 mmHg = 133.3 Pa, 1 cc/s = 10
-6

 m
3
/s. 
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5.4.2 Fluid-Solid Interaction in a 88% Area Reduction Stenosis 

 In this problem, we can observe the dramatic impact that a tighter degree of 

stenosis has on both the flow and vessel wall deformation fields. These differences 

are related to the appearance of even higher frequency components and complex 

structures on the flow due to the very small luminal area at the stenosis.  

 The solution was obtained using a 728,340 element and 130,503 node mesh 

with a time step of 0.25 ms, and six nonlinear iterations for a total of three 

cardiac cycles. For this problem, the pressure drop along the vessel length is 

approximately 10 mmHg during most of diastole, but reaches a maximum value 

of almost 70 mmHg at peak systole. The Reynolds number at peak systole is now 

slightly over 3000, due to maximum velocities on the order of 650 cm/s. 

 We proceed to examine the changes in the flow and vessel wall deformation 

patterns, as well as the energy content of the different flow frequencies relative to 

the results obtained for the 75% area reduction stenosis model. This comparison 

is presented in Figure 5-8. In panel a), we compare the flow patterns at peak 

systole and mid diastole for both models. We can observe that, for the 88% 

stenosis models, the flow structures are significantly more complex through the 

entire cardiac cycle. Furthermore, the effects of the stenosis on the velocity field 

are felt upstream of the stenosis during systole. This is a direct consequence of 

the much higher pressure drop present in this case.  
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 Panel b) shows the wall displacement history of four points in a cross section 

1.5 cm downstream of the stenosis. The results of the two models are 

dramatically different. For the 75% stenosis model, the displacement history 

follows closely (with small perturbations) the pressure waves shown in Figure 5-6. 

On the other hand, in the 88% stenosis model, we observe high frequency 

fluctuations in the displacement history of all nodes. These vibrations are induced 

by the oscillations in the flow patterns due to the high degree of stenosis and 

support the hypothesis of Boughner and Roach on the mechanism behind post-

stenotic dilation [78]. The results presented here provide data on the role that the 

degree of stenosis plays in exciting higher frequencies in the pressure, velocity 

and displacement fields. Post-stenotic dilation can be observed in the patient-

specific aortic coarctation model studied in section 5.6, where we can see a 

enlargement in the descending thoracic aorta downstream of a 90% area 

reduction stenosis (see Figure 5-14).  

 Finally, panel c) shows the differences in the flow power spectra of both 

models at different cross sections (inlet, outlet and post-stenotic section). We can 

see that in the 88% reduction model high frequencies (on the order of 20 Hz) not 

present in the inlet flow wave are excited at the level of the stenosis, and slowly 

dissipate downstream of the model. 
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Figure 5-8: a) Blood velocity at peak systole and mid diastole, b) wall displacement history, c) Power 

spectra of flow at different cross sections. Results corresponding to the 75% area reduction stenosis (left) 

and 88% area reduction stenosis (right). 
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5.5 Blood Flow in a Patient-Specific Model of a Healthy Adult 

Abdominal Aorta  

In this problem we consider a patient-specific model of a healthy abdominal 

aorta, including the renal arteries, the celiac, superior and inferior mesenteric 

arteries, and the common, external and internal iliac arteries (see Figure 5-9). The 

geometry and volumetric flow rates were obtained from magnetic resonance 

imaging data [79]. The measured flow rate at the level of the diaphragm was 

specified on the inlet face of the model, mapped to a Womersley velocity profile. 

The cardiac cycle is T=1.05 s. We utilized resistance boundary conditions for all 

nine outlet faces of the model based on the flow distribution acquired with MRI 

and completed with literature data [80,81] . The resistance values imposed at each 

of the nine outlet faces are shown in Figure 5-9. 

We have used a constant outlet pressure offset 0 113,330.5p  dyn/cm2 (85 

mmHg) in order to obtain a physiologically realistic range of pressures in the 

solution. The different parameters of the mesh, boundary conditions and material 

constants are given in Table 5-2: 
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Figure 5-9: Patient-specific model of a healthy abdominal aorta including the renal, celiac, mesenteric and 

iliac arteries. Each outlet shows the resistance value 
'R  used for the boundary condition    '

0p p Q R . 

0p = 113330.5 dyn/cm
2
 (85 mmHg). Resistances are given in cgs units (dynes  s  cm

-5
). 
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# of 

elements 

# of 

nodes 

T 

(s) 
Outlet BC 

t 

(ms) 

E 

(dyn/cm2) 
s 

(g/cm3) 
 (cm) 

 
(g/cm3) 


(dyn/cm2) 

854,151 167,850 1.05 
Resistance 

w/ offset 
0.4 4.144E+06 1.0 0.1 0.5 1.06 0.04 

Table 5-2: Mesh, boundary conditions and material constant parameters used for the patient-specific model 

of a healthy abdominal aorta. 

  

The value of the Young’s modulus of the vessel wall was chosen so that the 

maximum radial deformation at the level of the aorta for the physiologic range of 

pressure is approximately 10%. The wall is fixed by constraining the degrees-of-

freedom of the nodes located at the inlet and outlet rings. The solution was 

obtained using 4 nonlinear iterations per time step, for a total of three cardiac 

cycles.  

Figure 5-10 represents the volumetric flow rate and pressure at the inlet and 

representative outlets of the patient-specific model obtained using both rigid and 

deformable wall formulations.  

Blood flows into the different branches of the model according to the 

prescribed resistances representing the demands of the downstream vasculature. 

The differences between the pressure and flow waves obtained with rigid and 

deformable wall formulations are very noticeable. 
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Figure 5-10: Pressure and flow wave forms in a patient-specific model of the human abdominal aorta 

obtained for both rigid and deformable wall formulations, using a measured periodic inlet flow and 

resistance outlet boundary conditions. 1 mmHg = 133.3 Pa, 1 cc/s = 10
-6

 m
3
/s. 
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The rigid wall solutions show a much larger pressure pulse both at the inlet 

and all outlet faces. For example, the pressure pulse at the inlet face of the model 

is =176.94 - 90.03 = 86.91 rigidp mmHg for the rigid wall theory, and only 

=144.67-96.69=47.98 deformablep mmHg for the deformable wall theory. This is 

consistent with the results previously shown in section 5.2, and is also in 

agreement with experimental evidence [25]. Furthermore, the flow distribution 

between systole and diastole varies significantly between the rigid and deformable 

wall solutions. Rigid wall profiles show a much higher flow during systole, and 

smaller in diastole. This is due to the inability of rigid wall models to represent 

the flow ‘storage’ occurring at the walls at systole. The stored flow is later on 

released during diastole, resulting in the observed larger diastolic flows of the 

deformable theory. It is important to note that the flow through the vessel wall 

averaged over the cardiac cycle is zero in the periodic state (see Figure 5-11).  

Figure 5-12 shows the vessel wall velocity vectors at two points of the cardiac 

cycle (peak systole and early diastole) and illustrates the mechanism of flow 

‘storage’ at the walls. Lastly, Figure 5-13 shows the blood velocity contours 

obtained at the same two points of the cardiac cycle. 
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Figure 5-11: Total flow through the wall for the last cardiac cycle of the simulation. Note that the average 

value of the flow is zero, and therefore the total flow through the outlet faces equals the prescribed inflow 

over the cardiac cycle. 

 

With this problem, we demonstrate that the Coupled Momentum Method can 

be applied to large models of the cardiovascular system and that solutions can be 

obtained in a reasonable time frame: the computational cost of the deformable 

wall problem was just slightly over two times larger than that of the rigid wall 

problem, due to the reduction in time step size adopted for the deformable wall 

formulation.  
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Figure 5-12: Vessel wall velocity vectors obtained for the patient-specific model of the human aorta at two 

points of the cardiac cycle: peak systole (above), and early diastole (below). 
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Figure 5-13: Blood velocity contours obtained for the patient-specific model of the human abdominal aorta 

at two points of the cardiac cycle: peak systole (left) and early diastole (right). The maximum velocities are 

on the order of 250 cm/s. 
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5.6 Blood Flow in a Thoracic Aorta Coarctation Model: Application 

to Surgical Planning 

 In this section, we demonstrate the applicability of the Coupled-Momentum 

Method to surgical planning problems. Here, we study the blood flow and wall 

motion in a patient-specific model of the thoracic aorta of a 13 year old patient 

with severe aortic coarctation before and after stent placement. A patient-specific 

model was created from MRI data and preoperative boundary conditions assigned 

based on measured flow and pressure data. Prior to the intervention, proximal 

blood pressure was high and wall motion above the coarctation accentuated. 

Distal blood flow was turbulent and resulted in high-frequency vibrations of the 

downstream wall. Subsequent to treatment, wall motion normalized, proximal 

pressures were reduced and fluid turbulence decreased. We describe these results 

in detail below. 

5.6.1 Patient-specific Pre-operative Model of an Aortic Coarctation 

 In this problem we consider a patient-specific model of a thirteen-year-old 

patient with a thoracic aortic coarctation. This model includes the left common 

carotid artery, the brachiocephalic trunk, the vertebral artery and the left 

subclavian artery outflow branches (see Figure 5-14). The narrowing of the 

descending aorta represents a 90% reduction in cross-sectional area. The model 
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shows remarkable anatomic abnormalities in the form of two collateral vessels 

branching from the brachiocephalic trunk and the subclavian arteries, 

respectively, and connecting back to the descending aorta, in a location distal to 

the stenosis. These naturally-enlarged collateral vessels serve to reduce the severe 

pressure gradients arising from the aortic coarctation and supply flow to the 

distal aorta. The geometry and volumetric flow rates were obtained from 

magnetic resonance imaging data. The measured flow rate at the level of the 

ascending thoracic aorta was specified on the inlet face of the model, mapped to a 

time-varying parabolic velocity profile. 

 

Figure 5-14: Preoperative geometry of a patient-specific thoracic aorta coarctation model, including inflow 

and outflow faces. 
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 The cardiac cycle is T=1.1 s and the mean flow rate is Q=5 L/min. We 

utilized resistance boundary conditions for all five outlet faces of the model based 

on the flow distribution acquired with MRI and complemented with literature 

data [81]. The resistance values imposed at each outlet face are shown in Table 

5-3. 

 

 
Btrunk Carotid Vertebral Subclavian Aorta 

Resistance 

(dynes  s  cm-5) 
1,843 5,911 53,424 2,862 296 

Table 5-3: Resistances imposed at the outlet faces of the patient-specific aortic coarctation model 

  

We have used a constant outlet pressure offset p0 =87,500 dyn/cm2 (65.6 mmHg) 

at the descending aorta outflow face and p0 =82,000 dyn/cm2 (61.5 mmHg) at the 

other outlets in order to obtain a physiologically realistic range of pressures in 

the solution. The different parameters of the mesh, boundary conditions and 

material constants are given in Table 5-4: 

 

# of 

elements 

# of 

nodes 

T 

(s) 
Outlet BC 

t 

(ms) 

E 

(dyn/cm2) 
s 

(gr/cm3) 
 (cm) 

 
(gr/cm3) 


(dyn/cm2) 

656,512 133,913 1.1 
Resistance 

w/ offset 
0.01 4.144E+06 1.0 0.15 0.5 1.06 0.04 

Table 5-4: Mesh, boundary conditions and material constant parameters used for the pre-operative patient-

specific model of the thoracic aorta coarctation. 
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The wall is fixed by constraining the degrees-of-freedom of the nodes located at 

the inlet and outlet rings. The solution was obtained using 4 nonlinear iterations 

per time step, for a total of two cardiac cycles. 

 

Figure 5-15: Pre-operative blood pressure, wall motion and blood velocity shown at peak systole. 

 

Figure 5-15 shows the pressure, wall deformation and velocity magnitude (along a 

slice plane) fields. Pressure (shown at peak systole) presents a very large gradient 

across the stenosis, with a maximum value at peak systole of Psys = 50.8 mmHg 

(see Figure 5-16).  
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Wall motion is shown in Figure 5-15 at two different points of the cardiac cycle. 

The reference state given in blue corresponds to diastole, whereas the peak 

systolic geometry is shown in red. We can observe a significant distension of the 

aorta upstream of the stenosis in peak systole due to the large values of the 

pressure field. This is not seen downstream of the stenosis, where the pressure 

field takes on much smaller values. The vessel wall motion distal to the stenosis 

exhibits a high-frequency fluttering pattern due to the impinging flow coming 

from the collateral vessels and the stenosis. The flow field is turbulent, (max. 

Reynolds number at peak systole is 15,000), and therefore a very small time step 

size was required to solve this problem. No turbulence model was used. 

 Figure 5-16 shows the average pressures and flows at the outlet faces of the 

model. We can observe the very large pressure drop across the stenosis occurring 

at peak systole. The flow graph shows the phase lag between the prescribed 

inflow and the outflow waves of the model, due to the finite wave speed and 

“storage” of the systolic flow by the highly compliant aortic wall, subsequently 

released to the distal aorta during diastole. This storage of flow is the physiologic 

hallmark of the aorta that can be replicated by our formulation and that of 

deformable models in general. 
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Figure 5-16: Average pressure and flow over the cardiac cycle at the outlet faces of the patient-specific pre-

operative model of the thoracic aorta coarctation. 
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5.6.2 Patient-specific Post-operative Model of an Aortic Coarctation after 

Stent Placement 

 In this problem we simulate the effects of stent implantation on the blood 

flow and vessel wall motion for the thirteen-year-old patient with thoracic aortic 

coarctation. The stent is represented as a rigid section; due to its much higher 

stiffness compared to that of the aortic wall. The same measured inlet flow wave, 

wall mechanical properties, constant outlet pressure offsets and resistances from 

the previous case are considered here. Note that in this example, we neglect 

vasodilation and vasoconstriction of the distal vascular beds that would 

ordinarily accompany treatment of vascular obstructions. For this problem, the 

solution was obtained using a 504,885 element and 98,885 node mesh with a time 

step of 0.4 ms, and 4 nonlinear iterations per time step, for a total of two cardiac 

cycles. 

 Figure 5-17 shows the pressure, wall deformation and velocity magnitude 

fields. The effects of the stent implantation on all these fields are remarkable. 

First of all, the pressure drop across the stenosis is reduced dramatically. The 

maximum pressure drop at peak systole is now Psus=9.7 mmHg (see Figure 

5-18). Currently the residual gradient is the most commonly used clinical 

parameter of success. Application of this formulation will greatly enhance our 
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current understanding of coarctation in the aorta and lead to new determinants 

of “success”. 

 

 

Figure 5-17: Post-operative blood pressure, wall motion and blood velocity shown at peak systole. 

 

Furthermore, wall motion is significantly reduced upstream of the stenosis due to 

the much smaller driving pressure. Lastly, the level of turbulence of the velocity 

field is also dramatically reduced due to the relief of the coarctation. 
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Consequently, the high-frequency fluttering of the vessel wall downstream of the 

stenosis is almost completely eliminated. 

 

Figure 5-18: Average pressure and flow over the cardiac cycle at the outlet faces of the patient-specific 

post-operative model of the thoracic aorta coarctation. 
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Figure 5-18 also shows that the amount of flow going through the outlet face of 

the descending aorta is larger now than in the preoperative case (3.25 L/min 

versus 2.56 L/min). This is another consequence of the significant reduction in 

flow resistance in the thoracic aorta after the implantation of the stent. 

 

5.7 Blood Flow in an Abdominal Aortic Aneurysm Model: 

Application to Disease Research I 

 In this section, we present the first of two examples devoted to applications of 

the Coupled-Momentum Method to disease research problems. Here, we consider 

a patient-specific model of an abdominal aortic aneurysm (AAA), including the 

renal arteries feeding the kidneys, the celiac and superior mesenteric arteries 

feeding the viscera, and the iliac arteries, including the internal iliac arteries (see 

Figure 5-19).  The model corresponds to a 60-year-old female subject. 

 The goal of this section is to understand how the dynamics of blood flow in a 

patient with an abdominal aortic aneurysm change when going from rest to 

exercise conditions. As we will observe, the patterns of wall motion (and therefore 

wall stress) differ very significantly and may provide some insight into whether or 

not moderate exercise is advisable for these types of patients. 
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Figure 5-19: Geometry of a patient-specific abdominal aorta aneurysm model, including the renal, celiac, 

mesenteric and iliac arteries. 
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5.7.1 Patient-specific AAA Model under Rest Conditions 

 The geometry and volumetric flow rates for this model were obtained from 

magnetic resonance imaging data. The measured flow rate at the level of the 

diaphragm was specified on the inlet face of the model, mapped to a Womersley 

velocity profile. The cardiac cycle is T=1.05 s and the flow is Q=3.59 L/min. We 

utilized resistance boundary conditions for all eight outlet faces of the model 

based on the flow distribution acquired with MRI. 

 The resistance values imposed at each of the outlet faces are shown in Table 

5-5. We have used a constant pressure offset p0 =72,870 dyn/cm2 (55 mmHg) in 

order to obtain a physiologically realistic range of pressures in the solution.  

 Celiac SMA 
Left 

renal 

Right 

renal 
Left iliac 

Left 

int-iliac 

Right 

Iliac 

Right 

int-iliac 

Resistance 

(dynes  s  cm-5) 
1,946 2,622 2,622 2,622 2,912 6,790 2,912 6,790 

Table 5-5: Resistances imposed at the outlet faces of the patient-specific AAA model under rest conditions. 

 

The different parameters of the mesh, boundary conditions and material 

constants are given in Table 5-6: 

# of 

elements 

# of 

nodes 

T 

(s) 
Outlet BC 

t 

(ms) 

E 

(dyn/cm2) 
s 

(g/cm3) 
 (cm) 

  
(g/cm3) 


(dyn/cm2) 

663,243 135,522 1.05 
Resistance 

w/ offset 
0.4 4.144E+06 1.0 0.10 0.5 1.06 0.04 

Table 5-6: Mesh, boundary conditions and material constant parameters used for the patient-specific AAA 

model under rest conditions. 
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The wall is fixed by constraining the degrees-of-freedom of the nodes located at 

the inlet and outlet rings. The solution was obtained using 5 nonlinear iterations 

per time step, for a total of three cardiac cycles. 

 Figure 5-20 shows the pressure, wall deformation and velocity magnitude 

(along a slice plane) fields during peak systole. In this problem, we observe that 

the pressure field shows a maximum value of 95 mmHg, and a relatively small 

pressure gradient through the model. This is an indicator that the pressure losses 

are not significant. On the other hand, the velocity contour shows complex 

recirculating patterns with maximum velocities on the order of 50 cm/s at the 

upper level of the abdominal aorta. The vessel wall deformation is moderate, 

consisting primarily of a radial expansion and contraction pattern at the level of 

the aneurysm. A net forward and downward motion of the iliac bifurcation can 

also be observed. These motion patterns are certainly not radially symmetric and 

may be related to the evolution of the level of tortuosity of the vessels with aging 

and aneurysm growth.  

 These computations were performed with minimal increase (about a factor of 

two) in computational time compared to that of rigid wall theory. 
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Figure 5-20: Pressure, wall motion and blood velocity shown at peak systole for the AAA model under rest 

conditions. Blood pressure and velocity magnitude (along a slice plane) are shown at peak systole. 

5.7.2 Patient-specific AAA Model under Simulated Exercise Conditions 

 In this problem we consider the same model as in the previous example but 

under simulated exercise conditions. The cardiac cycle is now T=0.7 s and the 

flow is Q=10.77 L/min, representing a three-fold increase. 

 We have used a constant outlet pressure offset p0 =68,726 dyn/cm2 (51.2 

mmHg) and the resistance values shown in Table 5-7 in order to obtain a 

physiologically realistic range of pressures. Note that the resistance values of the 

celiac, SMA and renal arteries increase with respect to the values considered for 
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resting conditions (given in Table 5-5), whereas the resistance of the arteries 

supplying blood to the leg decreases. These new values account for the changes in 

blood flow distribution between the viscera and legs that occur during exercise 

conditions. 

 
Celiac SMA 

Left 

renal 

Right 

renal 
Left iliac 

Left 

int-iliac 

Right 

Iliac 

Right 

int-iliac 

Resistance 

(dynes  s  cm-5) 
2,694 3,630 3,630 3,630 2,912 6,790 2,912 6,790 

Table 5-7: Resistances imposed at the outlet faces of the patient-specific AAA model under exercise 

conditions. 

 

 Figure 5-21 shows the pressure, wall deformation and velocity contour along a 

slice plane at peak systole. We can observe that the pressure at the level of the 

aneurysm has increased by 20 mmHg with respect to that seen in rest conditions. 

Similarly, the velocity field shows larger values throughout the model. But 

perhaps the most remarkable difference between this example and the previous 

one can be seen in the patterns of the wall deformation. In this case, the 

deformation of the wall is no longer occurring in a radial expansion and 

contraction mode, but rather as a net motion forward and backwards due to the 

much larger inertial forces exerted on the wall by the impinging blood stream. 

 There are undoubtedly many important factors neglected in the present 

simulation, like the effects of the surrounding tissue and the tethering of the 

vessel wall to the spine, just to name a few. However, despite these limitations, it 
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seems clear that the patterns of the wall motion and blood flow change very 

significantly when going from rest to moderate exercise conditions. Expanding 

the methods presented in this thesis to account for the effects of the factors 

mentioned above may make it possible to better assess the changes in the 

dynamic loading on the vessel wall and therefore evaluate the risk of aneurysm 

rupture in these patients. 

 

Figure 5-21: Pressure, wall motion and blood velocity shown at peak systole for the AAA model under 

simulated exercise conditions. Blood pressure and velocity magnitude (along a slice plane) are shown at 

peak systole. 
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5.8 Blood Flow in a Model of the circle of Willis: Application to 

Disease Research II 

 In this section, we present the last example dedicated to disease research 

problems. Here, we consider a patient-specific model of the main arteries of the 

cerebro-vasculature. The arteries providing blood supply to the brain form a 

complex system as can be seen in Figure 5-22.  The total Cerebral Blood Flow 

(CBF) consists of the sum of the flows carried by three different vessels: the 

internal carotid arteries (left and right) and the basilar artery. These arteries 

branch off in different locations and usually form redundant pathways to flow. 

Quite often, these redundant paths constitute a complete loop known as the 

circle of Willis. 

 We are interested in exploring the hemodynamics of blood flow in these parts 

of the vascular system that are particularly prone to the development of 

aneurysms, especially of the saccular type [82]. These aneurysms typically form in 

the areas close to the intersection of the middle and anterior cerebral arteries 

with the internal carotid artery. However, fusiform aneurysms also develop in 

other parts of the cerebro-vasculature (like the basilar artery). Once the 

hemodynamic forces acting on the vessel wall are known, they can be used as 
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inputs in stress-mediated algorithms of growth and development of arterial tissue 

[83]. 

 

 

Figure 5-22: Main arteries of the cerebro-vasculature. Modified from Netter [84]. 
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Figure 5-23: Patient-specific model and boundary conditions of a complete circle of Willis with a saccular 

aneurysm.  

 

Figure 5-23 shows the patient-specific model considered in this section. The 

model corresponds to an adult subject with a saccular aneurysm in the left 

internal carotid artery immediately proximal to the circle of Willis. We consider 
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the three inlets described before, and a total of six outlets: the anterior cerebral 

arteries (left and right), middle cerebral arteries (left and right), and posterior 

cerebral arteries (also left and right). The model at hand presents a complete 

circle of Willis, although the left posterior communicating artery is very small 

and probably does not carry much flow. 

 

Figure 5-24: Close-up view of the saccular aneurysm present in the left internal carotid artery of the model. 

 

A close-up view of the saccular aneurysm present in the left internal carotid 

artery of the model can be seen in Figure 5-24.  

 For this problem, the geometry was obtained from magnetic resonance 

imaging data. The left and right internal carotid and basilar artery flow rates 

were prescribed based on the literature [85]. The cardiac cycle is T=1.1 s. We 

utilized resistance boundary conditions with pressure offset for all six outlet faces 

of the model. The resistance and pressure offset values imposed at each outlet 

face are shown in Table 5-8. These values were prescribed after performing an 
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iterative process in order to obtain a physiologic distribution of flow and 

pressure. This process can be streamlined by using optimization algorithms to 

obtain the values of the parameters of the outflow boundary conditions that best 

mimic physiologic data [86]. 

   

 Left Middle Right Middle Left Post Right Post Left Ant Right Ant 

Resistances R 

 (dyn  s  cm-5)  
25,132.22 32,304.98 25,179.05 24,324.32 10,000.00 10,500.00 

Pressure Offsets 

p0 

(dyn/cm2) 

57,783.80 57,783.80 72,000.00 72,000.00 85,000.00 85,000.00 

Table 5-8: Resistances and pressure offset (p = p0 + Q  R) imposed at the outlet faces of the model. 

 

 The Young’s modulus of the vessel wall was prescribed to be 5.92  106 

dynes/cm2. The Poisson’s ratio was set to 0.5, the wall density 1.0 g/cm3, the 

shear correction parameter k is 5/6, and the mean wall thickness is 0.01 cm. The 

assignment of these parameters can be further improved upon availability of 

experimental data. The vessel wall is kept fixed by constraining the degrees-of-

freedom of the nodes located at the inlet and outlet rings. The solution was 

obtained using a 1,012,145 element and 203,452 node mesh with a time step of 

0.25 ms, 5 nonlinear iterations per time step, and two cardiac cycles. This 

problem was solved on a SGI Altix computer using 54 processors and required a 

modest increase in computational effort (about 2-3 times) over that required to 

solve the rigid wall problem. 
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 Figure 5-25 shows a volume-rendering of the blood flow velocity magnitude 

and a surface rendering of the pressure at peak-systole and mid-diastole. Figure 

5-26 shows the flow and pressure waves obtained at different inlet and outlet 

faces of the model. 

 

Figure 5-25: Volume-rendering of the velocity field (top) and surface rendering of the pressure (bottom) at peak-

systole (left) and mid-diastole (right). 

 

Note that the values of the pressure solution are within the physiologically-

relevant range. Furthermore, the flow waves show a unique characteristic of 
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deformable wall simulations: the phase lag of the different curves illustrating the 

finite wave propagation speed in the computational domain. 

 
 

Figure 5-26: Flow and pressure waves at different inlet and outlet faces of the circle of Willis model. 
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Figure 5-27 shows a close-up view of the blood velocity magnitude, wall shear 

stress and vessel wall displacement fields around the saccular aneurysm at two 

different points of the cardiac cycle: peak-systole (left panels) and mid-diastole 

(right panels).  

 

Figure 5-27: Close-up view of the blood velocity magnitude, wall shear stress and wall displacement fields around the 

saccular aneurysm at two different times in the cardiac cycle: peak-systole (left) and mid-diastole (right). 
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We can observe that the variations in these fields during the cycle are 

remarkable. The accurate description of these magnitudes, together with the 

pressure, is crucial in order to represent the loads the blood flow is exerting on 

the wall. The tensile stress in the aneurysm wall is determined by the blood 

pressure, the wall shear stress and the dynamic inertial forces acting on the wall. 

5.9 Clinical Relevance of the Application Examples  

 The results presented in this chapter show great promise for the application of 

computational methods representing fluid-solid interactions to clinically-relevant 

problems. We can now study the behavior of deformable, patient-specific 

cardiovascular models at realistic levels of pressure, with realistic material 

properties and therefore have access to a number of different fields that are 

interesting to physicians and biologists: flow velocities, flow distribution, 

pressure, wall deformation, wall shear stress and wall tensile stress.  

 The methods in this thesis can be applied to a number of other biologically 

and clinically relevant problems, including: 

1. Investigating hemodynamic factors in the localization of atherosclerosis in 

the carotid artery, coronary arteries, and abdominal aorta. 

2. Quantifying shear and tensile stress in vascular bypass junctions. 

3. Quantifying forces acting on endovascular devices. 
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4. Optimization of surgical procedures. 

 Finally, as discussed in the next chapter, additional improvements to the 

methods described in this thesis could open up new horizons in vascular disease 

research, device design and treatment planning. 
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Chapter 6 

Chapter 6. Conclusions and Future 

Work 

6.1 Conclusions 

 In this thesis, we described a novel algorithm to model blood flow and vessel 

motion in large, patient-specific models of the cardiovascular system. We were 

motivated to reduce the computational cost associated with standard ALE 

formulations when applied to such large-scale models. By reducing the 

computational cost of the simulations, we can investigate applications related to 

disease-research and simulation-based medical planning in a clinically-relevant 

time frame. 
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 The method developed in this thesis couples the equations of the deformation 

of the wall with the equations governing the fluid motion using basic assumptions 

of a thin-walled structure. Furthermore, the coupling is done in such a way that 

the degrees-of-freedom of the wall and the fluid boundary are enforced to be 

identical. While ALE formulations can take advantage of the computational 

efficiencies of a fixed mesh simply by freezing the mesh update, this approach 

still requires the solution of additional equations representing the wall mechanics. 

However, the method we have proposed, using a transverse-shear stabilized 

membrane, does not necessitate the solution of any additional equations or 

inclusion of degrees of freedom beyond those of the wall fluid velocity. This 

greatly simplifies the development of the model, enables a pure fluids code to be 

generalized to include wave propagation and represents a computationally 

efficient alternative to ALE formulations for modeling blood flow in large 

deformable models of the vasculature. While our method will not produce results 

that are equivalent to ALE since, in its current implementation, we utilize a fixed 

fluid mesh and linearized kinematics, the algorithmic simplicity enables the 

solution of larger portions of the vasculature as is often required in surgical 

planning. 

 We have shown the application of the method to several geometries. The first 

one was an idealized model of a carotid artery. The simplicity of this geometry 
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provides a clear interpretation of the results, and stresses the fundamental 

differences in the pressure and flow fields obtained with rigid and deformable wall 

formulations. Furthermore, this problem illustrates the importance of having 

adequate boundary conditions to provide the right level of pressure to the vessel 

wall. With the second geometry, an idealized model of a carotid stenosis with 

75% and 88% area reductions, we have demonstrated the robustness of the 

method when applied to problems featuring complex, transitional velocity fields. 

In addition, we have also shown that the method is able to qualitatively 

represent the vessel wall behavior under high-frequency loads demonstrating the 

potential to be applied to many biological problems. This is further illustrated 

with a number of large patient-specific models of the vasculature, including a 

healthy adult abdominal aorta model, a thoracic aorta coarctation model, an 

abdominal aortic aneurysm model and a model of a complete circle of Willis. We 

have demonstrated that these complicated geometries can be easily solved with a 

small increase in computational effort (about 2-3 times) with respect to rigid wall 

formulations. This relatively small increase in computational time with respect to 

rigid wall formulations can be further improved by exploring specific linear 

algebra pre-conditioners for deformable wall problems, since all the results 

presented here have been obtained using the pre-conditioner scheme of rigid wall 

formulations.  
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 In addition to applying the method to the examples described above, we have 

also verified it against Womersley’s theoretical model for pulsatile flow in a 

cylindrical deformable vessel, showing an excellent agreement with the analytical 

solution. 

6.2 Future Work 

 Further work is needed to improve and validate the method as presented 

here. The physical description of the vessel wall can be improved by 

incorporating spatially-varying material properties for the wall, namely the tensor 

of material parameters, the vessel wall thickness  , and the initial stress of the 

wall. The elasticity of the vessel wall varies depending on the ratio of collagen 

and elastin fibers in the tissue. For example, the abdominal aorta is stiffer than 

the thoracic aorta because the ratio of elastin to collagen decreases [25,87]. The 

vessel wall constitutive equation needs to be expanded to consider anisotropy, 

since arteries show different behaviors in the circumferential and axial directions 

[63,88].  

 Extension of the wall constitutive equation to include viscoelastic effects 

involves no essential complications and will enable the inclusion of additional 

physical dissipation in the mathematical model. Experimental evidence shows 

that wall viscoelasticity is an important source of dissipation. Indeed, this is 
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manifest by damping and dispersion of the pressure and flow waves, and results 

in a distinct time lag between the pressure and radial deformation waves in the 

large arteries [89].  

 The stiffness effects of the surrounding tissue on the vessel wall can be 

represented by an elastic foundation – a Winkler model [65]: this is similar to 

Womersley’s approach to the incorporation of the elastic constraints of the 

surrounding tissue on the vessel wall [73].  

 It is also possible to improve the behavior of the enhanced membrane model 

of the vessel wall in regions of significant bending using rotation-free shell 

triangles as proposed by Oñate and Zárate [90]. 

 In this thesis, we have presented the linearized kinematics implementation of 

the method. However, keeping the domain fixed is not a requirement of the 

formulation. For the first, and arguably simplest, implementation of the Coupled-

Momentum Method, we have fixed the fluid domain for computational efficiency 

and since this approach requires the fewest changes to a standard finite element 

fluids solver. However, the method as given by equation (3.34) could be expanded 

to moving grids, and the structure could be generalized to include large 

displacements and nonlinear material models. In this case, while we could still 

embed the solid degrees of freedom into the fluid equations, we would have to 

update the fluid mesh. In doing so, we would likely lose some of the advantages 
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in the computational efficiency of our current method and will effectively 

transform it into an ALE formulation with a monolithic treatment of the fluid-

solid boundary interface degrees-of-freedom. 

 Additional work is needed to improve the boundary conditions of both the 

fluid and the solid domains. The fixed inlet and outlet rings of the vessel wall add 

artificial wave reflections in the structure. This constraint can be removed by 

prescribing velocity profiles at the inlet rings using Womerseley’s elastic wave 

theory and traction conditions at the outlet rings of the model. Further work is 

required to combine the deformable wall formulation presented here with more 

sophisticated outflow boundary conditions (i.e., impedance or one-dimensional 

linear and nonlinear wave theory) in order to further improve the simulation of 

wave propagation in three-dimensional models of the vasculature [24]. 

 A thorough study of turbulence is necessary in order to better assess the flow 

characteristics present in complex geometries such as stenosis or aneurysms. The 

transitional nature of the flow in these models precludes using standard 

turbulence models derived in many cases for situations of fully developed 

turbulence.      

 Finally, the method should be compared with other more general numerical 

formulations, like ALE methods, and validated with in vitro and in vivo 

experiments. While experiment validation studies are challenging to conduct, it is 
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only by comparison with such data that the ultimate realism of this method will 

be discerned. 

 In closing, the goal of this Ph.D. research, to develop a mathematical 

formulation to enable the solution of large scale patient-specific deformable 

models of the vasculature with computational costs similar to those of rigid wall 

formulations, has been attained. We expect that the application of this method 

to cardiovascular research will eliminate the use of rigid wall formulations in the 

future. We anticipate that, as more physiologic data characterizing the 

mechanical behavior of the vessel wall and surrounding tissues becomes available, 

this method can enable the simulation of vascular models as large as needed in 

order to represent the parts of the cardiovascular where the three-dimensional 

features of the flow are important. 
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