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a b s t r a c t

There has been a growing awareness over the past decade that stiffening of the aorta, and

its attendant effects on hemodynamics, is both an indicator and initiator of diverse

cardiovascular, neurovascular, and renovascular diseases. Although different clinical

metrics of arterial stiffness have been proposed and found useful in particular situations,

there remains a need to understand better the complex interactions between evolving

aortic stiffness and the hemodynamics. Computational fluid–solid-interaction (FSI) models

are amongst the most promising means to understand such interactions for one can

parametrically examine effects of regional variations in material properties and arterial

geometry on local and systemic blood pressure and flow. Such models will not only

increase our understanding, they will also serve as important steps towards the develop-

ment of fluid–solid-growth (FSG) models that can further examine interactions between

the evolving wall mechanics and hemodynamics that lead to arterial adaptations or

disease progression over long periods. In this paper, we present a consistent quantification

and comparison of regional nonlinear biaxial mechanical properties of the human aorta

based on 19 data sets available in the literature and we calculate associated values of

linearized stiffness over the cardiac cycle that are useful for initial large-scale FSI and FSG

simulations. It is shown, however, that there is considerable variability amongst the

available data and consequently that there is a pressing need for more standardized biaxial

testing of the human aorta to collect data as a function of both location and age,

particularly for young healthy individuals who serve as essential controls.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A healthy aorta augments left ventricular function by distending

during systole and recoiling elastically during diastole. That is, a

distensible aorta reduces systolic pressure, and thus workload on

the heart, and it enhances diastolic pressure, and thus coronary
r Ltd. All rights reserved
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perfusion (e.g., O’Rourke and Hashimoto, 2007; Boutouyrie

et al., 2008). In contrast, a stiffened aorta propagates the pulse

pressure wave faster and farther, which adversely affects the

heart, because reflected waves return earlier in the cardiac

cycle and increase central artery pulse pressure, and likewise

the brain and kidneys, because of increased pulsatility within
.
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the cerebral and renal microvasculatures (e.g., Adji et al., 2010).

Given the importance of quantifying aortic stiffness and its

attendant effects on the hemodynamics, it should not be

surprising that diverse clinically inferable quantities have been

identified, including the pressure–strain modulus (Ep), disten-

sibility (D), central pulse pressure (cPP), augmentation index

(AIx), pulse wave velocity (PWV), and the amplitude of the

backward traveling pressure wave (Pb)—see, for example,

Agabiti-Rosei et al. (2007), Najjar et al. (2008), Avolio et al.

(2009), Adji et al. (2010), McEniery et al. (2007), Redheuil et al.

(2010), and Wang et al. (2010).

Notwithstanding arguments that particular metrics are

better than others, especially for certain age groups (cf.

Barodka et al., 2011), the carotid-to-femoral pulse wave

velocity (CF-PWV) has tended to find the most favor clinically;

indeed, it is sometimes referred to as the ‘‘gold standard’’ for

measurement of arterial stiffness (Lacolley et al., 2009;

Boutouyrie et al., 2010). Although CF-PWV is simply an

empirical metric, the Moens–Korteweg equation (c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh=2ra

p
,

where c is wave speed, E the Young’s modulus of isotropic

linear elasticity, r the mass density of the blood, and a and h

the inner radius and thickness of the wall) is often cited to

appropriately emphasize the fundamental importance of

both arterial geometry (radius and thickness) and intrinsic

physical properties (material stiffness and density) on wave

propagation. Nevertheless, this simple equation is based on

many assumptions that do not apply over the aorta and iliac

artery that span the distance from the carotid to the

femoral arteries. Namely, one cannot assume a uniform

radius and wall thickness or a uniform, isotropic, linear

material behavior under small strains. There is, therefore, a

pressing need to understand more rigorously the roles of

spatial and temporal changes in arterial geometry and

material properties on pulse wave propagation as well as

other postulated clinical metrics of arterial stiffening.

Because of the associated geometric and material complex-

ities, one must resort to computational models for such

understanding and use appropriate methods from non-

linear mechanics.

Fortunately, advances in medical imaging and computa-

tional mechanics now enable patient-specific anatomical

models for simulating the hemodynamics within large seg-

ments of a deformable vasculature tree (cf. Coogan et al., 2012;

Xiao et al., 2013). These models remain limited, however, due

to the continuing lack of information on potential regional

variations in anisotropic wall properties and changes therein

due to genetic mutations, exercise, aging, disease, and so

forth. The goals of this paper, therefore, are twofold: first, to

mine and compare information from the literature on the

material properties of non-atherosclerotic human aorta as a

function of location and age, and second, to present a consistent

representation of these data via an appropriate linearization of a

single nonlinear, anisotropic constitutive descriptor of the aortic

wall. Finally, we also calculate the associated distensibility for

comparison to data that have been reported based on clinical

measurements. We conclude that, although considerable infor-

mation is available, much more consistently and rigorously

collected biaxial data are needed, particularly for young, healthy

aortas that serve as important controls in most modeling

efforts.
2. Methods

2.1. Constitutive relation

The aortic wall exhibits a nonlinear mechanical behavior

over finite strains, hence one must employ an appropriate

theoretical framework (Humphrey, 2002). Amongst the many

constitutive relations that have been proposed to describe the

passive mechanical properties of the aorta, we employed a

‘‘four-fiber family’’ model that has been shown to describe

well an extensive set of biaxial data for both human abdom-

inal aortic aneurysms and aging of the human abdominal

aorta (Ferruzzi et al., 2011a). Moreover, this four-fiber family

model motivates relations that have been found useful in

simulations of aneurysmal development from an initial non-

aneurysmal abdominal aorta (cf. Wilson et al., 2012). This

particular functional form is motivated by the assumption

that the primary constituents that bear load under tension

are an elastin-dominated amorphous matrix and multiple

embedded families of locally parallel collagen fibers. Not-

withstanding increasingly better data on site-specific col-

lagen fiber orientations (Schriefl et al., 2012), the four-fiber

family model can phenomenologically capture stress–stretch

data that may be influenced by yet unquantified lateral cross-

links, physical entanglements, and even passive smooth

muscle contributions. It can be written in terms of a (pseudo)

strain energy function W of the form

W¼
c
2
ðIc�3Þ þ

X4

k ¼ 1

ck
1

4ck
2

ðexp ck
2ððl

k
Þ
2
�1Þ2

h i
�1Þ, ð1Þ

where c, ck
1, and ck

2 are material parameters, Ic is the first

invariant of the right Cauchy–Green tensor C (i.e., trC), and lk

is the stretch experienced by the kth fiber family, which is

oriented in direction Mk
¼ ½0, sinak

0,cosak
0� in an appropriate

reference configuration (i.e., lk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mk
� CMk

p
). We let a1

0 ¼ 03

(axial family), a2
0 ¼ 903 (circumferential family), and a3,4

0 ¼7a0

(symmetric diagonal families), the last of which is thus a free

parameter. It should be noted that families 3 and 4 are

typically assumed to be mechanically equivalent, which in

combination with the assumption of their symmetric orien-

tations about the axial direction disallows twisting of the

vessel due to pressurization.
2.2. Simulated biaxial data

Best-fit values of the eight model parameters ðc, c1
1, c1

2, c2
1, c2

2,

c3,4
1 , c3,4

2 , a0Þ within Eq. (1) can be estimated using nonlinear

regression, and such estimates are best found from data

obtained via multiple biaxial stretching protocols (Humphrey,

2002). Moreover, when comparing results for different vessels

or ages thereof, it is best to use data from the same protocols.

Because data in the literature have been collected using

different types of tests (e.g., uniaxial, equibiaxial, and non-

equibiaxial stretching tests on excised strips or slabs of aorta

as well as extension–distension tests on cylindrical speci-

mens), we re-analyzed results from diverse studies wherein a

nonlinear constitutive relation was reported with associated

best-fit values of the material parameters. Specifically, based
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on the reported results, we ‘‘created’’ consistent sets of

biaxial data (i.e., Cauchy stress–stretch data, sy�ly and sz�lz,

where sy and sz are mean circumferential and axial stresses

and ly and lz are mean circumferential and axial stretch

ratios) that resulted from the same five simulated in-plane

biaxial loading protocols: stress-controlled tests wherein sy:
sz¼0.5:1, 0.75:1, 1:1, 1:0.75, and 1:0.5, with maximum values

of stress allowed to reach �120 kPa. Given the common

assumption of incompressibility, the point-wise Cauchy

stress t¼ �pIþ 2F ð@W=@CÞFT, where p is a Lagrange multi-

plier that enforces incompressibility (i.e., det F¼ 1), C¼FTF,

and the deformation gradient tensor in a standard in-plane

biaxial test is given by F¼diag[lr, ly, lz], with these stretch

ratios computed relative to an unloaded reference configura-

tion. Mean values of the Cauchy stress (i.e., transmural

averages) result directly from simulated biaxial tests with

homogeneous deformations.

We then used nonlinear regression (Levenberg–Marquardt)

to determine best-fit values of the eight model parameters by

minimizing the following objective function,

e¼
Xn

i ¼ 1

½ðsth
yy�s

exp
yy Þ

2
i þ ðs

th
zz�s

exp
zz Þ

2
i � ð2Þ

where n is the total number of data pairs contained within

the five simulated protocols for each set of biaxial data, with

n�600 per set. The superscripts ‘‘th’’ and ‘‘exp’’ denote

theoretically calculated (based on the four-fiber family model)

and experimentally measured (based on the data generated

from the results in the literature), respectively. In this way, we

used a consistent means to compare results regardless of the

original testing protocols or constitutive relations.
2.3. In vivo stress analysis

Possible inertial effects due to pulsatile hemodynamics are

often negligible in arterial mechanics (Humphrey, 2002);

hence, we assumed quasi-static motions in the absence of

body forces. The governing equation of motion thus reduces

to divt¼0. For simplicity, we then considered idealized short

sections of aorta to be straight, circular tubes of uniform

thickness subjected to cyclic distensions while maintained at

a fixed axial extension. The reduced equilibrium equation is

thus:

@trr

@r
þ

1
r
ðtrr�tyyÞ ¼ 0, ð3Þ

which can be solved easily via numerical integration to

compute the transmural distribution of stress. Moreover,

assuming boundary conditions trr(ri)¼�P and trr(ra)¼0, where

ri and ra denote the intimal (inner) and adventitial (outer)

radii, this equilibrium equation also allows one to compute

the distending pressure

P¼
Z ra

ri

tyy�trr

r

� �
dr, ð4Þ

which is useful for relating computational results back to the

in vivo setting. For example, computing the distending

pressure at systole and diastole allows one to estimate the

Distensibility (with units of kPa�1, where 7.5 mmHg¼1 kPa),
often defined as

D¼
dsys�ddias

ðPsys�PdiasÞddias
, ð5Þ

where d denotes luminal diameter.

In contrast to classical approaches in arterial wall

mechanics wherein the reference configuration is taken to

be an excised, radially-cut, nearly stress-free configuration

(cf. Fung, 1993; Humphrey, 2002), we solved Eq. (4) by follow-

ing Cardamone et al. (2009) and defining the reference

configuration to be an in vivo configuration near mean

arterial pressure (MAP¼Pdiaþ(Psys�Pdia)/3) and at the in vivo

axial stretch liv
z . Advantages of this approach are many,

including the ability to estimate residual stresses naturally

rather than needing to prescribe an opening angle that is

tractable theoretically only for axisymmetric vessels; more-

over, the opening angle cannot be inferred in vivo and it has

not been consistently reported for the human aorta as a

function of location or age.

Hence, albeit consistent with Eq. (1), to compute in vivo

stresses we further assumed that the different structural

constituents within the aortic wall constitute a constrained

mixture, whereby the different constituents can exhibit

different material properties and possess different natural

(stress-free) configurations despite deforming with the vessel

as a whole. Specifically, we computed the assumed neo-

Hookean response of the elastin-dominated matrix in terms

of its constituent-specific deformation, namely trCe, where

Ce
¼ ðFe

Þ
TFe, Fe

¼ FGe, ð6Þ

and the tensor Ge describes the in vivo pre-stretch of the

elastin that results from both its deposition stretch during

development and its stretch due to somatic growth (Valentı́n

et al., 2009). Conversely, F accounts for deformations from the

in vivo reference configuration to all other configurations,

including those at diastole or systole. Notice, therefore, that

F¼I in the in vivo reference configuration, whereby Fe
¼Ge as

desired. Similarly, the behavior of each family of collagen

fibers was described by a Fung-type exponential relation (cf.

Eq. (1)) wherein the stretch in each family of fibers was

computed as

lk
¼Gk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlzcosak

oÞ
2
þ ðlysinak

oÞ
2

q
, ð7Þ

where Gk represents the deposition stretch of the k¼1, 2, 3, 4

families of collagen fibers, that is, the stretch in the in vivo

reference configuration relative to the family-specific natural

(stress-free) configuration. For purposes herein, we let the

tensor Ge
¼1.2I for elastin and the scalar Gk

¼1.08 for each

family of collagen fibers; there is clearly a need for more

experimental data to prescribe such values according to

location and age. Using this approach, residual stresses,

which tend to homogenize the transmural distribution of

wall stress under normal conditions (Fung, 1993; Humphrey,

2002) results naturally without prescribing a measured open-

ing angle (cf. Cardamone et al., 2009). We assumed but a

single homogenized representation of the wall, however, due

to the lack of related information. That is, although we know

that the aortic wall consists of three layers – the intima,

media and adventitia – data are particularly scarce regarding

the layer-specific composition and material behaviors as a
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function of location and age and it will be difficult to estimate

layer-specific properties based on in vivo data. Again, there is

a pressing need for more data.
2.4. Consistent linearization

Notwithstanding the need to use geometrically and materi-

ally nonlinear constitutive relations to describe the mechan-

ical behavior of the aorta and then compute associated

stresses within the aortic wall, the deformations experienced

by these vessels tend to be modest over a cardiac cycle,

particularly in aging and diseases wherein the vessel stiffens

(e.g., hypertension or Marfan syndrome). Hence, we used the

concept of ‘‘small deformations superimposed on large’’ to

find appropriately linearized material properties (Baek et al.,

2007) that are suitable for use in many fluid–solid-interaction

codes (cf. Figueroa et al., 2009). Briefly, one first assumes that

the deformation is finite from a suitable reference configura-

tion (e.g., either an excised, traction-free configuration in a

classical formulation or a constituent-specific natural config-

uration in a constrained mixture formulation) to a configura-

tion during the cardiac cycle (e.g., near mean arterial

pressure); one then assumes an additional multiplicative

deformation to any configuration during the cardiac cycle,

as, for example, at diastole or systole (Fig. 1). One can then

construct a stress–strain relation that depends on both the

initial finite deformation and the superimposed small defor-

mation, thus resulting in a stiffness tensor (matrix) that

includes information on the ‘‘initial stress’’ and subsequent

material behavior. In particular, as shown by Baek et al.
Fig. 1 – Schema showing the three in vivo configurations

used in our calculation of blood pressure, mean wall

stresses, linearized stiffness, and distensibility: an in vivo

reference configuration defined near mean arterial pressure

and at the in vivo axial stretch as well as configurations

defined at end diastole and end systole, also at the in vivo

axial stretch. Note, therefore, that the linearization is about

an intermediate configuration during the cardiac cycle

(cf. Baek et al., 2007). Also shown are constituent-specific

natural (stress-free) configurations and the associated

deposition stretches that place stressed constituents into

the in vivo reference configuration, which allows it to be

a useful stressed reference (Cardamone et al., 2009).
(2007), the Cauchy stress can be written as

tij ¼�pdij þ to
ij þ Cijkl2kl þDijklOkl, ð8Þ

where the superscript o denotes an ‘‘original’’ value and the

linearized part is described by Cijkl2kl þDijklOkl, with the first

(second) term taking into account the symmetric (anti-sym-

metric) part of the small deformation. In our kinematic

description, the anti-symmetric part of the deformation

(i.e., rotation) is zero, hence we focus on the following

linearized measure of stiffness:

Cijkl ¼ 2dikFo
lAFo

jB
@W
@CAB

þ 2djkFo
iAFo

lB
@W
@CAB

þ 4Fo
iAFo

jBFo
kPFo

lQ
@2W

@CAB@CPQ

����
Co

ð9Þ

Using this relation, one can easily compute stiffness given

the finite deformation about which the linearization is

performed and the nonlinear strain energy function W, which

in general represents anisotropic behavior whether in terms

of a constrained mixture or not.
3. Results

Amongst the data available in the literature on the mechan-

ical behavior of the human aorta, results were recreated for

19 cases (i.e., different aortic locations and ages) from find-

ings reported in six studies that provide best-fit values of

material parameters within a specified nonlinear constitutive

relation: Vorp et al. (2003), Vande Geest et al. (2004), Labrosse

et al. (2009), Haskett et al. (2010), Garcı́a-Herrera et al. (2012),

and Martin et al. (2011). Fig. 2 shows representative results for

both our simulation of five different stress-controlled biaxial

testing protocols for the descending thoracic aorta based on

findings from two of the six papers (i.e., the 20–35 year old

group reported by Garcı́a-Herrera et al. (2012) and the 57–71

year old age group reported by Labrosse et al. (2009)) and the

ability of the four-fiber family constitutive model to fit (solid

lines) the simulated data (symbols). Similarly excellent

results were found for each of the parameter estimations,

which likely resulted in large part because comparable con-

stitutive functions were typically used to generate the data

(e.g., Garcı́a-Herrera et al. (2012) used a two-fiber family

model to describe their data). For a visual comparison with

actual data obtained during such biaxial tests, see Vande

Geest et al. (2004) or Martin et al. (2011). Although anisotropy

can only be assessed visually via equibiaxial stretching

protocols, not stress-controlled protocols (Humphrey, 2002),

the two sets of results in Fig. 2 reveal an expected decrease in

extensibility due to aging.

Fig. 3 compares circumferential and axial Cauchy

stress–stretch responses in equibiaxial stress protocols (i.e.,

sy:sz¼1:1) for each of the three aortic locations studied

(ascending thoracic aorta—ATA, descending thoracic

aorta—DTA, and infrarenal abdominal aorta—IAA) and the

three primary age groups (denoted by black-filled symbols for

the young group, gray-filled symbols for the middle aged

group, and open symbols for the older age group, which

includes the � and asterisk), which yielded 19 basic groups

for comparison. Note, in particular, that the infrarenal

abdominal aorta changed dramatically from the younger to
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the older group, generally becoming the least distensible

(circumferential) and extensible (axial response) of the three

locations. Associated best-fit values of the model parameters
are listed in Table 1 for the 19 different groups (separated by

aortic location, age group, and investigative team that gener-

ated the original findings); whereas it is difficult to compare

directly the eight best-fit values of the model parameters for

the many different groups, it is easier to compare values of

linearized stiffness that are computed directly from an

appropriate strain energy function W (cf. Ferruzzi et al.,

2013). Fig. 4a shows overall mean results for the two primary

tensional components of the linearized stiffness matrix Cijkl

for all 19 groups based on all data, separated by location (ATA,

DTA, and IAA) and age-group (young, o30 y.o., middle age,

431 y.o. and o60 y.o., and older, 461 y.o.). The associated

values are listed in Table 2 for all four primary components.

As discussed in detail below, however, our assessment of the

findings obtained from the aforementioned six studies sug-

gested that certain results were more reasonable than others.

Hence, Fig. 4b shows only those values of linearized stiffness

that appear to be reliable and thus appropriate for use in

fluid–solid-interaction (FSI) and fluid–solid-growth (FSG)

simulations. Note that the associated studies and parameter

values that we feel are most reasonable are bold face in

Table 2.

In particular, for purposes of comparison with in vivo

metrics, we calculated the distensibility for each of the 19

individual sets of data that were generated from the six

different studies. Because distensibility depends upon both

geometry and material properties over the range of distend-

ing pressures of interest, first note data in Fig. 5 that were

found or computed for the three aortic locations as a function

of age based on information provided in 16 additional studies

in the literature as well as some of our own unpublished

measurements (see the Appendix for tabulated values). These

data reflect the generally expected increase in inner radius

and pressure with aging, but show that the ratio of radius to

wall thickness does not change dramatically or consistently

at the three locations. Using information from Fig. 5 (i.e., the

tables in the Appendix) and the best-fit material parameters

(Table 1), distensibility was computed for the 19 data sets

using our four-fiber family model and compared directly with

values found in the literature (Fig. 6). The computed values
Fig. 2 – Representative biaxial Cauchy stress–stretch data

recreated for five different stress-controlled loading

protocols (different paired symbols) and the associated

best-fit (solid lines) by the four-fiber family constitutive

model. These results were obtained by first generating data

using previously reported nonlinear constitutive relations

and associated best-fit parameters regardless of the type of

experiment (e.g., uniaxial or biaxial) or constitutive relation

used in the original paper. The upper two panels ((a) and (b))

show results for the 20–35 year old age group reported by

Garcı́a-Herrera et al. (2012) whereas the lower two panels

((c) and (d)) show results for the 57–71 year old age group

reported by Labrosse et al. (2009), both for the descending

thoracic aorta. The predicted loss of extensibility with aging

was expected. The excellent fit by the four-fiber family

model likely resulted, in part, because the data were

generated from reported exponential-type constitutive

relations.



Fig. 3 – Cauchy stress–stretch responses during simulated equibiaxial stress-controlled loading protocols for the 19 different

cases (i.e., aortic locations and age groups) studied herein (cf. Table 1). Left and right panels represent circumferential and

axial behaviors, respectively, for the ascending thoracic aorta (ATA), descending thoracic aorta (DTA), and infrarenal

abdominal aorta (IAA). Results were based on findings reported in the following six papers: Garcia-Herrera et al. (inverted

triangle), Haskett et al. (diamond), Labrosse et al. (triangle), Martin et al. (� ), Vande Geest et al. (square), and Vorp et al.

(asterisk). With the exception of the single data sets from Martin et al. and Vorp et al. (shown by the � and asterisk), results

for young groups are denoted by filled black symbols, results for middle aged groups by filled gray symbols, and results for

older groups by open symbols. Of particular note is the biaxial stiffening of the DTA with aging that is revealed by the Garcı́a-

Herrera et al. (2012) data and also the excellent correspondence between the Garcı́a-Herrera et al. (2012) and Labrosse et al.

(2009) data for the middle aged DTA group despite the use of different experimental methods and constitutive models by

these investigators. Results of Vande Geest et al. (2004) for the aging abdominal aorta similarly reveal a stiffening effect with

aging as expected. Finally, note that a small black star at the top of a curve denotes those data sets that appear to be most

reliable overall, consistent with those values that are found bold face in Tables 1 and 2.
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are denoted by open symbols, an � , or an asterisk whereas

the measured values are denoted by filled circles; the solid

regression lines are based on the reported measured values
alone and the gray region denotes the associated 95% con-

fidence range for the measured values. As it can be seen,

distensibility decreases with increased age at all three



Table 1 – Best-fit values of the eight model parameters for the four-fiber family constitutive model.

c (kPa) c1
1 (kPa) c2

1 c1
2 (kPa) c2

2 c1
3,4 (kPa) c2

3,4 a0 (deg)

Ascending aorta

Haskettb (0–30) 22.41 58.37 0.60 60.16 3.24 59.85 2.99 48.10

Haskettb (31–60) 47.43 35.23 7.65E�06 40.84 0.10 15.21 2.58 48.98

Vorpf (51) 8.30 16.22 0.07 15.74 1.46E�06 1.53E�05 0.07 2.54

Haskettb (61 and above) 88.82 28.38 1.40E�06 0.15 1.94E�06 7.31 1.18E�07 45.00

Labrossec (66–71) 4.18E�07 10.27 6.31 8.29 11.06 58.17 9.41 47.18

Martind (80–98) 1.56E�08 113.18 17.38 110.27 16.86 121.58 50.17 44.82

Descending aorta

Garcia Herreraa (20–35) 37.20 4.68E�06 2.97E�07 2.90E�05 1.68E�05 28.16 3.48 43.88

Haskettb (0–30) 26.77 43.33 1.52 26.73 1.53 743.35 4.97 44.87

Garcia Herreraa (45–60) 24.66 1.01E�05 4.22E�05 4.81E�05 1.92E�05 90.10 5.33 42.19

Haskettb (31–60) 8.41E�08 74.50 2.21 67.82 1.68 487.27 15.95 44.71

Haskettb (61 and above) 7.48E�11 98.34 1.11E�08 162.73 13.72 803.36 35.64 48.12

Labrossec (57–71) 2.46E�07 3.87 10.72 6.61 5.02 61.18 6.83 42.47

Abdominal aorta

Haskettb (0–30) 1.46E�09 92.08 1.43 108.68 4.66 869.40 38.47 46.03

Vande Geeste (19–26) 13.98 2.50 0.02 2.50 0.02 16.07 0.51 45.00

Haskettb (31–60) 3.88E�09 68.10 2.47 76.82 5.08 550.95 34.79 45.93

Vande Geeste (35–50) 1.20E�08 15.81 13.10 28.49 55.12 29.03 54.26 46.96

Haskettb (61 and above) 24.29 152.52 0.00 205.02 9.81 1483.32 55.73 47.08

Labrossec (57–71) 2.35E�14 2.05 23.98 5.60 6.08 81.68 12.04 41.05

Vande Geeste (61–75) 3.21E�08 47.43 30.28 54.18 38.08 45.94 70.79 45.53

Estimates were determined via nonlinear regression of data recreated for five biaxial stress-controlled loading protocols based on findings

from six papers wherein a nonlinear constitutive relation was reported with associated best-fit values of the material parameters. The first

column notes the paper where the constitutive information was found and the age range for the aortic samples:

The bold face represents the most reliable material parameters based on calculated stress–stretch responses and distensibility.
a Garcı́a-Herrera et al. (2012).
b Haskett et al. (2010).
c Labrosse et al. (2009).
d Martin et al. (2011).
e Vande Geest et al. (2004).
f Vorp et al. (2003).
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locations as expected. In addition, however, note that

values computed based on data from some of the six

papers matched the measured values much better than did

others.

Finally, Fig. 7 shows mean values of the in vivo circumfer-

ential and axial wall stress (i.e., spatially averaged through

the wall) as well as the ratio of the two as a function of aortic

location and age. All calculations were performed at the

mean arterial pressure and the in vivo axial stretch based

on all results considered. Although there are different trends

for the different locations, it is interesting that the spatially

averaged mean wall stresses tended not to change, on

average, with increasing age, consistent with early sugges-

tions by Clark and Glagov (1985). Moreover, it appears that the

stresses tended to remain nearly equibiaxial, as revealed by

the nearly constant ratios of circumferential to axial stress.
4. Discussion

The vast majority of prior hemodynamic models have been

built upon the assumption that the vasculature is rigid (cf.

Taylor and Figueroa, 2009). Although this assumption may

allow reasonable estimates of wall shear stress or the
formation of thrombus under some conditions, it does not

allow computation of pulse wave velocity or the associated

pulse pressure (e.g., the pulse wave velocity is infinite in a

rigid tube, consistent with the Moens–Korteweg equation).

There is, therefore, a pressing need to understand better the

complex interactions between the hemodynamics and wall

mechanics, each of which evolve under many circumstances.

Indeed, one of the most common risk factors for many

diseases of the heart, brain, and kidney is stiffening of central

arteries due to aging, both normal and accelerated

(Greenwald, 2007; O’Rourke and Hashimoto, 2007; Safar,

2010; Barodka et al., 2011). Whereas normal aging of the

arterial wall typically includes a loss of elastic fibers,

increased apoptosis and/or loss of contractile function of

smooth muscle cells, an increase in fibrillar collagen and its

cross-linking, and possibly an accumulation of glycosamino-

glycans (Sawabe, 2010), it has been suggested that other

arterial disorders are characterized by similar changes. That

is, many now consider arterial disorders resulting from

hypertension, diabetes, and heritable disorders such as Mar-

fan syndrome to represent a type of pre-mature or acceler-

ated aging (e.g., Agabiti-Rosei et al., 2007; Barodka et al., 2011).

Consequently, there is a pressing need to understand both

the causes and consequences of aging-related stiffening of



Fig. 4 – Calculated linearized stiffness as a function of

location along the aortic tree (ATA, DTA, and IAA) and age

(cf. Table 2). Top: light gray and white bars represent,

respectively, the mean values of circumferential and axial

stiffness (in MPa) based on all 19 results considered.

Bottom: Black and dark gray bars represent values of

circumferential and axial stiffness (in MPa) that appear

to be most reliable based on relative comparisons of the

stress–stretch results from which they were obtained

(cf. Fig. 3) and their correspondence with associated

calculations of distensibility (cf. Fig. 6).
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central arteries, particularly the associated changes in local

and systemic hemodynamics that ultimately govern organ

function.

Notwithstanding the important correlations that have

been reported between changes in clinical metrics such as

PWV, cPP, AIx, or Pb and the arterial stiffening that associates

with aging or any of the aforementioned disorders, there is

also a need to correlate the underlying changes in cell

function and matrix structure with the evolving nonlinear

material behavior. In particular, endothelial cells, smooth

muscle cells, and fibroblasts respond to changes in hemody-

namic loads (which can be quantified in terms of correlations

with stresses or strains induced by blood pressure and flow)

via changes in gene expression that, in turn, affect cellular

function and matrix composition and organization. In other

words, we must understand the interactions between wall

mechanics and hemodynamics if we are to exploit our

increasing understanding of vascular mechanobiology (cf.

Humphrey, 2008). For example, mounting evidence suggests
that pulse pressure is a particularly important local stimulus

of mechanobiological responses by the wall (cf. Eberth et al.,

2009). Rigid wall models of hemodynamics have no role in

such studies.

This paper represents the first attempt to collect and then

compare diverse results from the literature on the passive

biaxial nonlinear mechanical behavior of human aorta as a

function of location and aging within the context of a single

theoretical framework. Our basic findings (Figs. 3 and 4 and

Table 2) are generally consistent with the longstanding

thought that the abdominal aorta is materially stiffer than

the thoracic aorta and that aging increases aortic stiffness (cf.

Figure 4.10 in Nichols and O’Rourke, 1990). Indeed, our com-

puted values of linearized stiffness (Table 2) were of the same

order of magnitude as those reported by others based on

different methods, including those that often assume isotropy

and thus a single modulus (cf. values from �0.7 to 1.3 MPa in

Nichols and O’Rourke). We submit, however, that one should

quantify potential changes in anisotropy given the importance

of axial wall mechanics, particularly in compensatory adapta-

tions by arteries (Humphrey et al., 2009).

Although the present findings represent the first consis-

tent comparison of biaxial results across multiple studies in

terms of an appropriate nonlinear multiaxial constitutive

relation and linearization thereof, many calculations of the

associated values of distensibility were concerning. That is,

Fig. 6 revealed that calculated values (open symbols or an �

or asterisk) were often dramatically different from measured

values (filled circles, solid regression line, and gray confi-

dence interval). Although in vivo measures of distensibility

are subject to experimental errors, this metric represents the

state-of-the art in clinical inference (cf. Boutouyrie et al.,

2010) and must be considered as useful for comparison. We

similarly acknowledge that values of distensibility computed

herein (via Eqs. (1) and (4) and the related assumptions) are

subject to uncertainty, including consequences of the

assumption of the lack of perivascular support (which should

result in an overestimation of the actual distensibility) as well

as a circular geometry defined by uncertain input values of

luminal diameter (cf. Fig. 5 and the table in the Appendix).

Hence, one should not expect complete agreement. Never-

theless, results for distensibility for those data sets that

appeared most reasonable during parameter estimation (cf.

Fig. 3), such as those by Garcı́a-Herrera et al. (2012) for the

descending thoracic aorta, agreed well with the experimental

values of distensibility. Conversely, results for data sets that

appeared suspect during parameter estimation (cf. Fig. 3),

such as many of those from Haskett et al. (2010) and those of

Vorp et al. (2003), did not agree well with the measured values

of distensibility. For example, results from Haskett et al.

(2010) for the ascending aorta suggested a softening with

aging, which is not expected, and those for the descending

thoracic aorta and abdominal aorta were much stiffer (and

nearly linear) than the other data examined for those loca-

tions. These unexpected findings for stress–stretch behavior

based on the Haskett et al. (2010) data were borne out by the

distensibilty calculations, which suggested, for example, a

nearly constant value regardless of age for both the descend-

ing thoracic aorta and the infrarenal abdominal aorta (cf. open

diamonds in Fig. 6). Although our analysis cannot isolate



Table 2 – Values of the linearized elasticity tensor (cf. Eq. 9) for the four-fiber family constitutive model and best-fit model
parameters listed in Table 1.

Age (years) Elasticity tensor (MPa)

Cyyyy Czzzz Cyyzz Cyzyz

Ascending aorta

Haskettb (0–30) 21 0.72 0.77 0.24 0.33

Haskettb (31–60) 42 0.44 0.34 0.04 0.13

Vorpf (51) 55 0.84 0.09 6.04E�10 0.11

Haskettb (61 and above) 68 0.26 0.33 3.84E�17 0.11

Labrossec (66–71) 68 1.10 0.57 0.51 0.56

Martind (80–98) 68 1.55 4.42 1.37 1.47

Descending aorta

Garcia Herreraa (20–35) 30 0.65 0.46 0.35 0.45

Haskettb (0–30) 25 0.99 2.05 1.05 1.05

Garcia Herreraa (45–60) 51 0.75 0.72 0.54 0.64

Haskettb (31–60) 44 1.22 1.89 1.12 1.21

Haskettb (61 and above) 69 2.22 1.68 1.47 1.55

Labrossec (57–71) 69 1.71 0.59 0.56 0.63

Abdominal aorta

Haskettb (0–30) 22 1.61 3.38 1.82 1.93

Vande Geeste (19–26) 22 1.14 0.28 0.30 0.43

Haskettb (31–60) 49 1.45 2.04 1.36 1.44

Vande Geeste (35–50) 49 2.22 1.51 0.97 1.03

Haskettb (61 and above) 67 2.60 2.76 2.08 2.18

Labrossec (57–71) 64 0.61 0.69 0.50 0.55

Vande Geeste (61–75) 67 2.21 1.61 1.00 1.05

The first column cites the reference wherein the original constitutive information was found plus the reported age range for the aortic

samples.

The second column (age) reveals the particular age associated with information on geometry and pressure from tables in the Appendix.

Finally, bold face represent the most reliable values consistent with Table 1.
a Garcı́a-Herrera et al. (2012).
b Haskett et al. (2010).
c Labrosse et al. (2009).
d Martin et al. (2011).
e Vande Geest et al. (2004).
f Vorp et al. (2003).
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reasons for such examples of unexpected results, one might

question the determination of the reference configuration in

the actual tests given the reported limited extensibility in the

data, particularly for samples from younger subjects. Conver-

sely, data from Haskett et al. (2010) appeared to be too

compliant at older ages in the ascending aorta, similar to

results from Vorp et al. (2003) that were obtained via uniaxial

tests. It is known that uniaxial tests often underrepresent

arterial stiffness relative to that under biaxial loads such as

those that are experienced in vivo. Regardless of possible

reasons, based on our assessments of the biaxial Cauchy

stress–stretch behavior and computed distensibility as well

as observed consistency across reports, we submit that those

values that are bold face in Tables 1 and 2 are most reliable for

FSI or FSG calculations. Moreover, we suggest that until

multiple biaxial studies from different laboratories can be

used to check for consistency in results at particular locations

along the aorta, or aging related effects thereof, estimations of

distensibility can provide a quick check of reasonableness.

Specifically, consistent with our calculations of distensi-

bility, we suggest that the data of Martin et al. (2011) provide

particularly good information on the ascending aorta in
extreme old age, the data of Garcı́a-Herrera et al. (2012)

provide particularly good information on the behavior of

the descending thoracic aorta in younger and middle ages,

and the data of Vande Geest et al. (2004) provide very good

data on the infrarenal aorta across all three age groups.

Moreover, the data of Haskett et al. (2010) and Labrosse

et al. (2009) provide very good results for the ascending aorta

in middle and older ages, respectively, and the data of

Labrosse et al. (2009) provide very good results for the

descending thoracic aorta in old age. Note, too, that the

stress–stretch results of Garcı́a-Herrera et al. (2012) and

Labrosse et al. (2009) showed good agreement for the des-

cending aorta in middle age (cf. Fig. 3), hence providing

further confidence in both of these data sets. It is thus

interesting to note that best-fit values of the model para-

meters for the data of Garcı́a-Herrera et al. (2012) suggested

that the symmetric diagonal families of collagen dominated

the stress–stretch behavior (cf. Table 1); this suggestion is also

consistent with experimental measurements of the primary

collagen fiber directions in the descending aorta (Schriefl

et al., 2012), again providing more confidence in the results.

It is also noteworthy that the value of c, which is meant to



Fig. 5 – In vivo values of inner radius, ratio of inner radius

to wall thickness, and blood pressure plotted as a function

of age (cf. Table 3). Geometric data correspond to mean

arterial pressure and are shown as closed black symbols:

squares for the ascending thoracic aorta (ATA), circles for

the proximal descending thoracic aorta (DTA), and triangles

for the infrarenal abdominal aorta (IAA). Values for

pressure are shown at systole, mean arterial pressure, and

diastole. The lines show linear regressions of each data set.

As expected, the data suggest an increase in caliber and

pressure with age, but not a strong trend across the three

aortic locations regarding the inner radius:wall thickness

(a/h), a term that appears in both the Laplace equation for

mean circumferential wall stress and the Moens–Korteweg

formula for pulse wave velocity.

Fig. 6 – Distensibility plotted as a function of age for the

ascending thoracic aorta (top), descending thoracic aorta

(middle), and the infrarenal abdominal aorta (bottom).

Measured values mined from the literature are denoted by

closed circles, with the solid line showing the associated

linear regression of the data and the grey region the 95%

confidence intervals. Calculated values based on the

nonlinear constitutive model are denoted as follows:

Garcia-Herrera et al. (open inverted triangle), Haskett et al.

(open diamond), Labrosse et al. (open triangle), Martin et al.

(� ), Vande Geest et al. (open square), and Vorp et al.

(asterisk). Note, in particular, the unexpected near constancy

of predictions based on the Haskett et al. data, particularly for

the DTA and IAA, which similar to observations based on the

predicted stress–stretch responses (Fig. 3) suggests that these

results must be considered suspect.
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capture effects of the elastin-dominated matrix, tended to be

very small for the oldest data sets at each location (Table 1),

consistent with the expectation of a progressive loss of
elastic fiber integrity with aging (cf. Ferruzzi et al., 2011b).

Finally, it should be noted that Ferruzzi et al. (2011a) pre-

viously reported best-fit model parameters for the four-fiber

family model based directly on the actual data reported by

Vande Geest et al. (2004). Comparison of those values with the



Fig. 7 – Values of the mean (i.e., transmural average)

circumferential (i.e., hoop) and axial Cauchy stresses

calculated at mean arterial pressure (MAP) and the in vivo

axial stretch shown as a function of location (ascending

thoracic aorta, ATA; descending thoracic aorta, DTA;

infrarenal abdominal Aorta, IAA) and age. Also shown is

the associated ratio of these two components of stress. All

results were determined using data in Table 1 and A1–A3.
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present values (Table 1) reveals notable differences that are

likely due to our recreating the data herein based on the

constitutive relations and material parameters reported by

Vande Geest et al. (2004). In particular, they used different

constitutive relations to fit their data depending on the age of

the specimen, including a polynomial rather than exponen-

tial form for data from the youngest aorta. Clearly, it is best to

fit constitutive relations to actual data when possible, but
because we did not have access to all of the original data for

all six of the studies considered herein, we recreated the data

consistently for all groups to facilitate comparisons.

Finally, based on the findings that appeared to be more

reliable, the present results (Fig. 4b and Table 2) suggest that

the ascending and descending thoracic aorta are similar in

behavior whereas the infrarenal abdominal aorta is stiffer at

most ages. Moreover, with the exception of the ascending

aorta in extreme old age, the circumferential direction tended

to stiffen more with aging than did the axial direction (based

on assumed, but clearly limited information on in vivo values

of axial stretch). There is clearly a need for much more data,

however, particularly for the ascending aorta at younger ages

and more information on the associated in vivo axial

stretches, relative mass fractions of elastin and collagen, and

their prestretches, as well as changes in cross-link densities

and roles of glycosaminoglycans. The values assumed herein

for constituent pre-stretches are consistent with results in

Wilson et al. (2012) for the older infrarenal abdominal aorta,

but results are lacking for other locations and ages.

In closing, we note that despite the complexity of the four-

fiber family model (8 parameters), it is possible to estimate

values of these parameters from limited clinical data (cf.

Masson et al., 2008). That is, provided that the functional

form of a constitutive relation is well validated using exten-

sive in vitro data and that reasonable ranges of many of the

parameters are known a priori, it should be possible to

determine patient-specific material properties from in vivo

data, which in turn would allow fluid–solid interaction

models to be truly patient-specific (geometry, wall properties,

and hemodynamic boundary conditions based on ultrasound,

phase-contrast MRI, or other imaging modalities). Indeed,

others have similarly suggested that material parameters in

comparable nonlinear constitutive relations can be well

estimated from in vivo data (Stålhand et al., 2004; Åstrand

et al., 2011), hence this must be our goal. As we show herein,

once the nonlinear constitutive equation is known, one can

check the result by evaluating the distensibility and then

compute appropriately linearized values of stiffness as

needed in FSI models. Because of the very different time-

scales during the cardiac cycle and in arterial growth and

remodeling, FSI simulations represent a vital part of a

fluid–solid-growth model (Figueroa et al., 2009).

Nevertheless, we also emphasize that, like similar

structurally-motivated models (cf. Holzapfel et al., 2000;

Zulliger and Stergiopulos, 2007; Wan et al., 2012), our four-

fiber family model is an advance over purely phenomenolo-

gical models (cf. Fung, 1993), but it is phenomenological

nonetheless. For example, whereas we have shown that the

value of the parameter c (which is motivated by contributions

of elastin to overall wall properties) decreases in cases

wherein there is a loss of elastic fiber integrity (Ferruzzi

et al., 2011a,2011b; Eberth et al., 2011), there is yet a need to

model better the underlying reasons for such changes in load

carrying capability. For example, although we can interpret c

as jeð1�xe
Þce where je, xe and ce are, respectively, a mass

fraction, damage function, and intrinsic modulus for elastin,

there is also a need to model structural interactions between

elastin and other components of the extracellular matrix as

well as intramural cells. Clearly, the lack of combined



Table A1

Ascending aorta

Age (years) Inner radius (mm) Thickness (mm) lz Pressure (mmHg) Mean hoop stress (kPa) Mean axial stress (kPa)

Dias Mean Syst Dias Mean Syst Dias Mean Syst Dias Mean Syst Dias Mean Syst

Haskett(2) (0–30)

14c 10.12 10.12c 10.29 1.98 1.80 1.63 1.20 63c 74c 98c 47.48 55.29 73.85 17.02 51.36 105.68

17c 13.84 14.05c 14.55 2.01 1.80 1.59 1.20 44c 59c 88c 45.25 61.18 93.90 19.47 57.27 117.77

21l 13.36 13.47l 13.87 2.00 1.80 1.60 1.20 64l 79l 108l 63.59 78.59 109.79 30.03 74.66 141.54

23l 11.59 11.63l 11.91 1.99 1.80 1.61 1.20 81l 96l 126l 69.87 82.45 109.99 32.58 78.53 146.08

24l 11.47 11.64l 12.09 2.01 1.80 1.59 1.20 66l 85l 123l 56.37 73.06 108.91 26.20 69.12 135.17

24c 11.45 11.56c 11.89 2.00 1.80 1.61 1.20 64c 80c 111c 54.56 68.29 96.70 23.90 64.34 126.50

25l 12.85 12.97l 13.41 2.00 1.80 1.60 1.20 75l 92l 126l 71.70 88.13 123.85 35.41 84.21 156.08

25l 14.05 14.10l 14.49 1.99 1.80 1.61 1.20 82l 97l 127l 85.60 101.02 135.02 43.49 97.10 173.50

25j 13.70 13.75j 14.03 1.99 1.80 1.62 1.20 59j 71j 94j 60.05 72.05 96.74 26.70 68.14 130.61

29b 13.41 13.46b 13.84 1.99 1.80 1.60 1.20 75b 89b 119b 74.79 88.42 120.77 36.20 84.51 155.58

Haskett(2) (31–60)

33c 16.53 16.71c 17.31 2.60 2.33 2.06 1.15 43c 50c 63c 40.82 47.62 61.71 19.16 45.86 80.28

33f 13.16 13.40f 14.17 2.61 2.33 2.03 1.15 76f 90f 118f 57.64 68.78 94.41 30.67 67.00 111.97

35l 12.86 13.08l 13.80 2.60 2.33 2.04 1.15 84l 99l 128l 62.23 73.85 99.75 33.53 72.07 119.27

35j 13.71 13.90j 14.61 2.60 2.33 2.04 1.15 66j 77j 100j 52.08 61.02 82.54 26.52 59.25 100.39

43c 11.99 12.37c 13.41 2.63 2.33 1.99 1.15 86c 108c 152c 59.53 76.19 114.89 33.93 74.41 124.16

45j 15.32 15.55j 16.36 2.60 2.33 2.04 1.15 75j 88j 113j 66.10 78.03 104.52 36.26 76.26 125.11

48c 17.54 17.90c 18.95 2.62 2.33 2.02 1.15 38c 47c 65c 38.27 47.95 69.66 18.99 46.20 81.69

55c 19.05 19.25c 20.17 2.60 2.33 2.04 1.15 63c 73c 93c 68.92 80.13 106.23 37.97 78.38 127.85

55j 16.11 16.45j 17.62 2.62 2.33 2.00 1.15 77j 93j 126j 71.39 87.24 125.48 41.10 85.48 139.65

Labrosse(3) (66–71)

64g 13.61 14.01g 14.60 3.00 2.85 2.68 1.08 59g 75g 107g 37.63 48.98 72.45 35.22 46.97 66.71

65j 16.52 17.15j 18.05 3.03 2.85 2.65 1.08 75j 95j 134j 58.07 75.98 112.19 57.00 73.97 101.44

75j 16.20 16.85j 17.77 3.03 2.85 2.65 1.08 69j 89j 129j 52.39 69.93 106.33 51.69 67.92 95.01
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Table A2

Descending aorta

Age (years) Inner radius (mm) Thickness (mm) lz Pressure (mmHg) Mean hoop stress (kPa) Mean axial stress (kPa)

Dias Mean Syst Dias Mean Syst Dias Mean Syst Dias Mean Syst Dias Mean Syst

Garcia Herrera(1) (20–35)

23h 9.25 9.75h 10.73 1.57 1.50h 1.38 1.14 82 97 126 67.42 83.78 119.20 79.13 84.30 94.75

25j 9.69 10.25j 11.29 1.88 1.79 1.65 1.14 59j 71j 94j 42.60 54.00 78.30 50.47 54.51 62.76

26h 11.34 12.00h 13.37 1.89 1.80h 1.64 1.14 69 83 112 57.96 73.51 109.89 68.92 74.03 85.27

34h 12.19 12.90h 14.30 2.10 2.00h 1.83 1.12 64 77 103 52.03 65.96 97.30 61.79 66.49 76.51

35j 10.06 10.55j 11.56 1.84 1.77 1.63 1.12 66j 77j 100j 50.00 60.96 86.31 57.74 61.48 69.74

35h 10.16 10.65h 11.59 1.77 1.70h 1.58 1.12 82 95 120 65.34 79.09 108.21 75.23 79.60 88.33

Garcia Herrera(1) (45–60)

45j 11.28 11.75j 12.55 1.81 1.75 1.65 1.10 75j 88j 113j 64.39 78.51 107.31 75.08 82.51 97.85

46h 11.90 12.50h 13.52 2.09 2.00h 1.87 1.10 76 92 124 60.30 76.41 110.90 71.87 80.41 98.96

50h 11.15 11.80h 12.85 2.10 2.00h 1.86 1.09 66 83 117 49.12 65.07 99.38 59.99 69.06 88.76

50h 9.24 9.85h 10.90 1.16 1.10h 1.00 1.09 54 70 104 60.48 83.28 136.43 75.36 87.29 115.76

55j 11.47 12.05j 13.08 1.81 1.73 1.61 1.08 77j 93j 126j 68.07 86.08 126.04 80.96 90.08 110.71

59h 13.64 14.40h 15.64 2.30 2.20h 2.05 1.08 72 89 122 59.55 77.39 114.74 71.96 81.40 101.48

Labrosse(3) (57–71)

64h 13.95 14.68h 15.97 2.09 2.00h 1.86 1.07 94 113 152 86.76 109.54 159.93 103.31 112.12 131.45

64h 9.34 10.17h 11.37 1.30 1.20h 1.09 1.07 43 62 101 43.90 68.97 125.57 59.95 71.58 96.97

65j 11.59 12.33j 13.51 1.81 1.71 1.58 1.06 75j 95j 134j 67.09 90.31 139.40 83.27 92.87 112.97

66h 13.73 14.57h 15.91 2.11 2.00h 1.85 1.06 79 99 137 71.62 95.12 143.44 88.17 97.72 117.16

68h 11.79 12.58h 13.83 1.91 1.80h 1.66 1.06 65 84 123 56.15 77.38 124.21 70.59 79.86 100.00

69h 11.19 12.12h 13.44 1.61 1.50h 1.37 1.06 51 71 109 50.08 75.48 128.27 66.70 78.05 101.11

69h 11.72 12.53h 13.75 1.81 1.70h 1.57 1.06 67 87 125 60.93 84.54 133.08 77.03 87.06 107.42

71h 11.58 12.23h 13.38 1.58 1.50h 1.39 1.05 91 111 152 92.97 119.61 178.61 112.11 122.22 144.36

72h 10.69 11.62h 12.98 1.40 1.30h 1.18 1.05 51 72 113 55.15 84.67 148.37 74.57 87.33 114.22

72h 10.02 10.63h 11.67 1.58 1.50h 1.38 1.05 79 99 140 69.74 92.59 143.46 85.79 95.13 115.75

73h 13.25 13.98h 15.21 2.10 2.00h 1.86 1.05 98 119 160 85.87 109.82 160.27 103.21 112.42 131.67

73h 14.70 15.67h 17.31 1.91 1.80h 1.65 1.05 73 93 134 78.75 106.70 169.71 98.34 109.42 134.10

75j 11.55 12.33j 13.57 1.79 1.69 1.55 1.05 69j 89j 129j 62.25 85.60 136.29 78.27 88.13 109.27
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Table A3

Abdominal aorta

Age (years) Inner radius (mm) Thickness (mm) lz Pressure (mmHg) Mean hoop stress (kPa) Mean axial stress (kPa)

Dias Mean Syst Dias Mean Syst Dias Mean Syst Dias Mean Syst Dias Mean Syst

Vande Geest(5) (19–26)

15i 5.87 6.30i 7.25 0.96 0.90 0.79 1.16 71i 89i 125i 61.84 82.80 132.85 77.11 82.84 93.47

15k 5.76 6.11k 6.84 0.95 0.90 0.81 1.16 68k 82k 109k 58.05 73.98 109.49 69.68 74.02 81.92

25i 7.60 8.10i 9.18 1.16 1.10 0.98 1.14 70i 86i 117i 64.48 84.14 128.89 78.84 84.20 93.92

26k 6.59 6.98k 7.81 1.18 1.12 1.02 1.14 76k 91k 120k 59.68 75.41 110.46 71.24 75.46 83.16

27a 6.89 7.45 8.66 1.21 1.13 0.99 1.14 61a 79a 114a 49.65 69.19 115.23 63.77 69.25 79.13

27a 6.54 7.02 8.09 1.20 1.13 1.00 1.14 66a 83a 117a 51.02 68.56 110.39 63.77 68.61 77.64

Vande Geest(5) (35–50)

32e 7.02 7.52e 8.19 1.32 1.24 1.16 1.13 83e 116e 183e 62.77 93.70 160.76 77.72 87.58 106.04

36e 9.16 9.55e 10.16 1.37 1.32 1.25 1.12 76e 93e 128e 70.11 89.49 130.99 77.62 83.88 96.01

44k 7.35 7.60k 7.98 1.53 1.49 1.43 1.11 79k 93k 120k 52.22 63.41 85.86 55.98 59.52 66.21

45e 8.51 8.90e 9.48 1.56 1.51 1.43 1.11 72e 90e 127e 54.31 70.92 106.52 61.20 66.57 77.03

46e 9.23 9.59e 10.16 1.58 1.52 1.45 1.10 84e 101e 135e 67.90 84.69 119.79 74.04 79.34 89.57

46i 8.30 8.65i 9.20 1.59 1.54 1.46 1.10 79i 97i 134i 56.97 72.87 106.91 63.25 68.32 78.26

48a 8.83 9.29 9.94 1.62 1.56 1.47 1.10 72a 93a 134a 54.55 74.02 114.03 63.17 69.46 81.12

48a 7.34 7.70 8.20 1.62 1.56 1.48 1.10 67a 86a 123a 42.17 56.73 86.21 48.61 53.33 62.02

48e 7.98 8.50e 9.20 1.65 1.57 1.47 1.10 79e 108e 165e 53.82 78.32 129.11 65.43 73.28 87.55

52e 8.26 8.64e 9.20 1.71 1.65 1.57 1.09 63e 80e 115e 42.08 55.90 85.46 48.09 52.62 61.44

53e 8.61 8.99e 9.56 1.73 1.67 1.59 1.09 73e 91e 127e 50.30 65.46 96.92 56.56 61.45 70.68

55e 8.84 9.24e 9.83 1.77 1.71 1.62 1.09 67e 84e 119e 46.25 60.48 91.14 52.28 56.89 66.01

60d 7.27 7.57 8.02 1.86 1.80 1.72 1.08 72d 89d 123d 38.82 49.92 72.98 43.40 46.93 53.73

60e 7.27 7.75e 8.38 1.90 1.81 1.70 1.08 78e 108e 167e 41.95 61.80 102.92 51.57 57.85 69.32

60i 9.39 9.78i 10.37 1.87 1.81 1.72 1.08 80i 98i 133i 55.46 70.68 101.66 61.45 66.28 75.36

Vande Geest(5) (61–75)

61k 7.52 7.68k 7.89 1.87 1.84 1.80 1.08 79k 95k 126k 43.38 53.26 72.63 65.66 70.68 80.48

63e 9.22 9.48e 9.81 1.92 1.88 1.83 1.07 75e 95e 135e 49.39 64.31 94.59 73.36 80.95 96.15

69k 8.30 8.48k 8.72 2.03 1.99 1.95 1.06 79k 95k 128k 44.19 54.27 75.32 66.50 71.62 82.26

70a 9.55 9.84 10.19 2.05 2.00 1.95 1.06 69a 90a 131a 44.10 59.35 89.60 68.58 76.38 91.65

70a 8.03 8.27 8.56 2.05 2.01 1.95 1.06 64a 84a 125a 34.38 46.50 71.75 58.59 64.83 77.67

71i 9.97 10.27i 10.64 2.08 2.03 1.97 1.06 77i 99i 143i 50.69 67.19 100.52 75.22 83.58 100.23
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histological and mechanical data as a function of location

and age also impeded the present study. As a result, we did

not compute distending pressure based on a multilayered

model due to the lack of information on the percentage of the

wall that was intima, media, and adventitia in each of the

aforementioned studies and the associated lack of layer-

specific histology or biaxial mechanical data. An important

step in that direction is the work by Weisbecker et al. (2012),

though they focused on uniaxial tests and the investigation

of preconditioning related effects and damage.

The general framework presented herein can incorporate

additional histopathological information as it becomes avail-

able, but advances in linking genetics to arterial stiffness (cf.

Yasmin and O’shaughnessy, 2008; Lacolley et al., 2009) will

necessitate the development of improved, structurally-based

constitutive relations. Such relations will need to account not

only for the elastic fibers and fibrillar collagen, but also the

many different associated proteins and glycoproteins (e.g.,

collagen V or fibrillin-1) that play important roles in deter-

mining arterial stiffness and structural integrity. Although

human data will ultimately be needed in this regard (cf. de

Wit et al. 2012), genetically modified mouse models may well

prove essential for the initial studies (cf. Ferruzzi et al., 2013).

In summary, arterial stiffening can result from changes in

the composition, organization, and interactions of diverse

extracellular matrix proteins, glycoproteins, and proteoglycans

that constitute the wall. Given that stiffening of the aorta and

its attendant effects on hemodynamics serve both as an

indicator and an initiator of diverse cardiovascular diseases

(see, e.g., Blacher and Safar, 2005; O’Rourke and Hashimoto,

2007; Lakatta et al., 2009; Barodka et al., 2011), there remains a

pressing need for well performed biaxial tests, better correla-

tions of mechanical behaviors with histological information,

and appropriate quantification in terms of nonlinear constitu-

tive relations, which in turn can be linearized appropriately to

obtain values of stiffness needed in fluid–solid-interaction and

thus fluid–solid-growth models. The present work sought to

summarize current data and to present a theoretical frame-

work sufficient for quantification. Based on the findings

presented, we hope that this work stimulates additional

studies that seek to collect the much needed experimental

data, particularly for human arteries but for mouse models as

well. Only in this way will we be able to understand

fluid–solid-interactions that impact many aspects of cardio-

vascular, neurovascular, and renovascular health.
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Appendix A

Tables A1–A3. Information used to calculate values of aortic

distensibility shown in Fig. 6 and linearized stiffness in Fig. 4

and Table 2. Specifically, data on geometry (inner radius and

thickness at mean arterial pressure), in vivo axial stretch, and

blood pressure (systolic, diastolic and mean arterial pressures)
were mined from 11 papers in the literature, each denoted by a

superscript letter associated with each value: aÅstrand et al.

(2011), bFattori et al. (2000), cGreenfield and Patel (1962), dHirai

et al. (1989), eImura et al. (1986), f Isnard et al. (1989), gKoullias

et al. (2005), hLang et al. (1994), iLänne et al. (1992), jRedheuil

et al. (2010), kSonesson et al. (1993), and lTellides (unpublished).

These data were combined with constitutive parameters listed

in Table 1, which were determined based on data from 6

additional papers: (1)Garcı́a-Herrera et al. (2012), (2)Haskett et al.

(2010), (3)Labrosse et al. (2009), (4)Martin et al. (2011), (5)Vande

Geest et al. (2004), and (6)Vorp et al. (2003). Finally, note that

values denoted by boldface were used as an input; the other

values were evaluated using our model and model parameters

from Table 1.
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