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a b s t r a c t

In three-dimensional blood flow simulations of the cardiovascular system, velocity and pressure fields in
the computational domain are highly affected by outlet boundary conditions. This fact has motivated the
development of novel methods to couple three-dimensional computational domains with one-dimen-
sional numerical models or, alternatively, with zero-dimensional or one-dimensional analytic models.
In all such methods described to date, whether they are explicit or implicit, the relationship between flow
and pressure at the outlet boundary is enforced weakly. This coupling does not include any constraints on
the shape of the velocity profiles nor on the distribution of pressure at the interface. As a result, there
remain some classes of problems that are, at best, difficult to solve, and at worst, intractable, with current
numerical methods for simulating blood flow. These include problems with significant flow reversal dur-
ing part of the cardiac cycle or geometric complexity in the proximity of the outlet of the computational
domain. We have implemented a novel method to resolve these challenging problems whereby an aug-
mented Lagrangian method is used to enforce constraints on the shape of the velocity profile at the inter-
face between the upstream computational domain and the downstream analytic domain. These
constraints on the shape of the velocity profile are added to the Coupled Multidomain Method in order
to implicitly couple the computational domain with downstream analytic models. In this study, an axi-
symmetric profile is imposed after ensuring that each constrained outlet boundary is circular. We dem-
onstrate herein that including constraints on the shape of the velocity profile does not affect velocity and
pressure fields except in the immediate vicinity of the constrained outlet boundaries. Furthermore, this
new method enables the solution of problems which diverged with an unconstrained method.

� 2009 Published by Elsevier B.V.
1. Introduction

Computational simulations have evolved as a powerful tool for
quantifying blood flow and pressure of the cardiovascular system
[47] in studies of the hemodynamics of healthy and diseased blood
vessels [3,23,25,33,34,38,44,48,53,56], the design and evaluation of
medical devices, [14,27,43] and prediction of the outcomes of sur-
geries [24,28,29,40,46]. As computing power and numerical meth-
ods advance, simulation-based methods are expected to become
even more extensively used in studying the cardiovascular system.
In recent years, much progress has been made in simulating blood
flow in arteries, especially in boundary condition development.
Previously, constant or time-varying pressure, zero traction or
velocity were utilized as outlet boundary conditions
[3,14,23,24,27,33,34,40,43,44,46,48,53]. Such boundary conditions
are limiting in that they do not accurately replicate vascular
Elsevier B.V.

: +1 650 725 9082
).
impedance of the downstream vasculature. More recently, new
outlet boundary conditions have been developed in an effort to
better model the interactions between the computational domain
and the downstream vasculature. The new outlet boundary condi-
tions couple the computational domain with simpler models such
as resistance, impedance, lumped-parameter models, or one-
dimensional models [1,7–11,25,28,29,36,38,49–52,56]. With this
coupling, outlet boundary conditions are derived naturally through
the interactions between the computational domain and down-
stream analytic or computational models, thus enabling highly
realistic flow rate and pressure fields. We previously developed a
highly versatile method, the Coupled Multidomain Method
[51,52], to couple a three-dimensional finite element model of
the cardiovascular system to a variety of downstream analytic
models. The Coupled Multidomain Method enabled us to obtain
physiologically realistic flow rate and pressure.

However, we have encountered two remaining challenges in
prescribing outflet boundary conditions for three-dimensional
simulations of blood flow. The first challenge occurs when complex
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flow structures propagate to the outlet boundary due to vessel cur-
vature or branches immediately upstream of the outlet boundary.
This problem can often be resolved by artificially extending the
vessel with a long, straight segment. Yet, the addition of this seg-
ment creates an artificial and non-physiologic part in the computa-
tional domain and can cause a significant part of the computational
domain to reside in regions of no interest. The second challenge oc-
curs in modeling problems including branches off of the arch of the
aorta, the infra-renal segment of the aorta, and the lower extremity
vessels due to significant retrograde flow through these vessels
during part of the cardiac cycle [45]. As flow is drawn back into
the computational domain from the downstream analytic models,
the velocity distribution at the interface becomes irregular and, in
many cases, results in a divergence of the simulation.

These challenges occur because outlet boundary conditions
which involve coupling between a three-dimensional domain and
a zero-dimensional or one-dimensional model, including the Cou-
pled Multidomain Method, generally impose weak relationships
between flow and pressure at each interface. This coupling does
not include any constraints on the shape of velocity profiles nor
on the pressure distribution at the interface. Yet, zero-dimensional
and one-dimensional models are derived based on an assumed
shape of the velocity profile and the assumption of uniform pres-
sure over the cross section [5,20,55]. Therefore, the coupling of
the three-dimensional domain and a zero-dimensional or one-
dimensional model is not consistent if the three-dimensional do-
main has no constraints on the shape of the velocity profiles and
pressure distribution at the interface.

There have been studies to resolve challenges associated with
outlet boundary conditions in computational hemodynamics. For-
maggia et al. [9] implemented a total pressure boundary condition
by constructing a special formulation of the Navier–Stokes equa-
tions. The total pressure boundary condition controls the energy
flux entering and exiting the computational domain, thus, stabi-
lizes fluid dynamics problems by setting energy bounds. However,
this approach requires an unconventional formulation of the Na-
vier–Stokes equations and it remains to be seen whether it will ad-
dress all of the numerical difficulties associated with complex
flows at boundaries.

In this paper, we add constraints on the shape of velocity pro-
files to the formulation of the Coupled Multidomain Method. These
additional constraints can be readily implemented in flow solvers
that use standard formulations of the Navier–Stokes equations.
Additionally, by constraining the shape of velocity profiles, we
achieve consistent coupling between the three-dimensional do-
main and a zero-dimensional or one-dimensional model.

In finite element methods, constraints are generally enforced
using penalty methods or Lagrange multiplier methods [21]. Both
of these methods are used in a variety of applications, among them,
to enforce incompressibility in a computational domain or mass
flux through the boundary [8,11,31,50]. An augmented Lagrangian
method enforces constraints using both penalty and Lagrange mul-
tiplier methods, and can be used to achieve faster convergence and
enforce constraints more strongly [12,15,17,35,39]. To our knowl-
edge, penalty methods, Lagrange multiplier methods, and
augmented Lagrangian methods have not been applied in compu-
tational fluid dynamic studies to enforce constraints on the shape
of velocity profiles. We utilize an augmented Lagrangian method
to weakly enforce the shape of velocity profiles at outlet bound-
aries. By constraining the shape of velocity profiles, we obtain solu-
tions of problems which diverged with an unconstrained method.

This paper is organized as follows. First, we present the deriva-
tion of an augmented Lagrangian method for constraining the
shape of velocity profiles of outlet boundaries and describe con-
straint and velocity profile functions. We then demonstrate this
method by applying it to simulate blood flow in a straight cylindri-
cal model and a subject-specific abdominal aorta model and show
that this new method does not affect velocity and pressure except
in the immediate vicinity of the outlet boundary. We next use an
idealized aortic bifurcation model to illustrate that this method
can be used to truncate branch vessels very close to a vessel of
interest. Finally, we demonstrate the utility of this method by
using it to compute pulsatile flow in a subject-specific thoracic aor-
ta model where there is significant retrograde flow during early
diastole.
2. Methods

2.1. Governing equations (strong form)

Blood flow in the large vessels of the cardiovascular system can
be approximated as the flow of an incompressible Newtonian fluid
[34] in domain X 2 Rnsd where nsd is the number of spatial dimen-
sions. Boundary C of spatial domain X is split into Dirichlet parti-
tion Cg and Neumann partition Ch such that C ¼ @X ¼ ðCg [ ChÞ
and Cg \ Ch ¼ /.

The three-dimensional equations of an incompressible Newto-
nian fluid consist of the three momentum balance equations and
the continuity equation with suitable boundary and initial
conditions:

q~v ;t þ q~v � r~v ¼ �rpþ divðs
�
Þ þ~f ;

divð~vÞ ¼ 0; ð1Þ

where s
�
¼ 2lD

�
with D

�
¼ 1

2
ðr~v þr~vTÞ;

~vð~x; tÞ ¼~gð~x; tÞ; ~x 2 Cg ; ð2Þ
~t~n ¼ ½�p I

�
þ s
�
� �~n ¼~hð~v ;p;~x; tÞ; ~x 2 Ch; ð3Þ

~vð~x;0Þ ¼ ~v0ð~xÞ; ~x 2 X: ð4Þ

The unknowns are fluid velocity ~v ¼ ðvx;vy;vzÞ and pressure p.
Density q and viscosity l of the fluid are assumed to be constant.
~f is the external body force.

Constraint functions are designed to enforce a shape of the
velocity profile on a part of Neumann partition Ch. For each con-
strained face Chk

, where Chk
# Ch, the following constraint func-

tions are imposed:

ck1ð~v ;~x; tÞ ¼ ak

Z
Chk

ð~vð~x; tÞ �~n�Ukð~vð~x; tÞ;~x; tÞÞ2ds ¼ 0;

ck2ð~v ;~x; tÞ ¼ ak

Z
Chk

ð~vð~x; tÞ � ~t2Þ2ds ¼ 0; ð5Þ

ck3ð~v ;~x; tÞ ¼ ak

Z
Chk

ð~vð~x; tÞ � ~t3Þ2ds ¼ 0 for k ¼ 1; . . . ;nc; ~x 2 Chk
:

Here, nc is the number of faces where the constraints on the shape
of the velocity profile are enforced, and Ukð~vð~x; tÞ;~x; tÞ is the desired
shape of the normal velocity profile. Note that although the shape of
the velocity profile is constant, the velocity profile itself changes as
the flow rate at face Chk

changes. Here,~n is the unit normal vector of
face Chk

. ~t2 and ~t3 are unit in-plane vectors that are orthogonal to
each other and to the unit normal vector ~n at face Chk

. ak is used
to nondimensionalize the constraint functions:
ak ¼

R
Chk

ds

�Q 2
k

; ð6Þ
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where Qk is the mean flow of face Chk
.

The instability occurring in blood flow simulations with retro-
grade flow can be explained with a classical stability analysis de-
rived from the Navier–Stokes equations:

q
2

Z
X
ð~v �~vÞ;t d~xþ

Z
X
r~v : s

�
d~x

¼
Z

Cg

~g � � pþ q
2
~g �~g

� �
I
�
þ s
�

� �
�~nds� q

2

Z
Ch

ð~v �~vÞ~v �~nds

þ
Z

Ch

~h �~v dsþ
Z

X

~f �~v d~x:

R
Cg
~g � � pþ q

2
~g �~g

� �
I
�
þ s
�

� �
�~ndC is bounded as these values are de-

rived from a Dirichlet boundary condition. However, for Neumann
boundary conditions, if ~v �~njCh

< 0, � q
2

R
Ch
ð~v �~vÞ~v �~ndC is positive

and destabilizing. We can decompose the destabilizing term
q
2

R
Ch
ð~v �~vÞ~v �~ndC as follows:

q
2

Z
Ch

ð~v �~vÞ~v �~ndC ¼ q
2

Z
Ch

ð~vn �~vn þ~vs �~vsÞ~v �~ndC; where ~vn

¼ ð~v �~nÞ~n; ~vs ¼ ~v �~vn:

To stabilize this destabilizing term, we need to bound~vn �~vn, ~vs �~vs,
and~v �~n. The continuity equation controls the total flux through the
boundaries, thus controlling the magnitude of ~v �~n. However, this
control is not strong enough to stabilize the problems in blood flow
simulations as it controls the total flux, not the flux through each
boundary. The constraint function ck1 controls normal velocity com-
ponents of each boundary providing stronger constraints on the
boundary flux. The continuity equation and the constraint function
ck1 together control the magnitudes of ~vn �~vn and ~v �~n. The other
two constraint functions ck2 and ck3 minimize in-plane velocity
components, and thus bound ~vs �~vs. Therefore, our proposed meth-
od stabilizes the instability that can arise with retrograde flow.

2.2. Governing equations (weak form)

The trial solution and weighting function spaces for the semi-
discrete formulation of the momentum balance, continuity, and
constraint equations are defined as follows:

S ¼ ~vj~vð�; tÞ 2 H1ðXÞnsd ; t 2 ½0; T�;~vð�; tÞ ¼~g on Cg

n o
;

W ¼ ~wj~wð�; tÞ 2 H1ðXÞnsd ; t 2 ½0; T�; ~wð�; tÞ ¼ ~0 on Cg

n o
;

P ¼ pjpð�; tÞ 2 H1ðXÞ; t 2 ½0; T�
n o

;

~k1ðtÞ;~k2ðtÞ; . . . ;~knc ðtÞ 2 ðL
2ð0; TÞÞnsd ;

d~k1ðtÞ; d~k2ðtÞ; . . . ; d~knc ðtÞ 2 ðL
2ð0; TÞÞnsd ;

~jk 2 Rnþ
sd ; Penalty numbers where k ¼ 1; . . . ;nc;

~rk 2 Rnþ
sd ; Regularization parameters such that ~rkj j � 1;

k ¼ 1; . . . ; nc:

ð7Þ

Here, H1ðXÞ represents the Sobolev space of functions which are
square-integrable in X and whose first derivatives are also
square-integrable in X. L2ð0; TÞ represents the Hilbert space of func-
tions that are square-integrable in time (0,T). nsd is the number of
spatial dimensions and is assumed to be three. ~g is the assigned
Dirichlet boundary condition and ~kkðtÞ and d~kkðtÞ are the Lagrange
multipliers and the test functions of the Lagrange multipliers,
respectively. Penalty numbers ~jk are added for the augmented
Lagrangian method [12,15,17,35] to penalize the constraint func-
tions. Regularization parameters ~rk are utilized to regularize the
constraint equations. The regularization is needed to prevent the
formulation of an ill-conditioned system of equations. In Hughes
[21], incompressible behavior in elasticity theory is regularized by
replacing it with slightly compressible behavior, in which case the
Lagrange multipliers play the role of pressure and the regularization
parameters play the role of an artificial compliance. Analogously,
the regularization parameters can be considered a normalized arti-
ficial velocity and the Lagrange multipliers a normalized artificial
force.

The weak form becomes:
Find ~v 2S, p 2 P and ~k1;~k2; . . . ;~knc 2 ðL

2ð0; TÞÞnsd such that for
any ~w 2W, q 2 P and d~k1; d~k2; . . . ; d~knc 2 ðL

2ð0; TÞÞnsd the following
is satisfied:

BGð~w;q;d~k1; . . . ;d~knc ;~v;p;~k1; . . . ;~knc Þ

¼
Z

X

~w � ðq~v ;t þq~v �r~v �~f Þþr~w : ð�p I
�
þs
�
Þ

n o
d~x

�
Z

X
rq �~v d~x�

Z
Ch

~w � ð�p I
�
þs
�
Þ �~ndsþ

Z
C

q~v �~nds

þ
Pnsd

i¼1

Pnc

k¼1
fkki � ðrkidkki� dckið~w;~v;~x; tÞÞgþ

Pnsd

i¼1

Pnc

k¼1
dkki � ðrkikki� ckið~v;~x; tÞÞ

þ
Pnsd

i¼1

Pnc

k¼1
jki � ckið~v;~x; tÞdckið~w;~v ;~x; tÞ ¼ 0;

where dckið~w;~v;~x; tÞ ¼ lim
�!0

dckið~v þ �~w;~x; tÞ
d�

: ð8Þ

This formulation can be considered a traditional Galerkin weak
form in addition to new constraint terms that are obtained by the
minimization of the following terms on a portion of the Neumann
boundary:

�
Xnsd

i¼1

Xnc

k¼1

kki � ckið~v ;~x; tÞÞf g þ 1
2

Xnsd

i¼1

Xnc

k¼1

jki � ckið~v ;~x; tÞ2

þ sumnsd
i¼1

Xnc

k¼1

rkik
2
ki; ð9Þ

where
Pnsd

i¼1

Pnc
k¼1fkki � ckið~v ;~x; tÞÞg is the Lagrange multiplier term

whereas 1
2

Pnsd
i¼1

Pnc
k¼1jki � ckið~v;~x; tÞ2 is the penalty term. In addition

to the terms required to impose the augmented Lagrangian method,
the regularization term

Pnsd
i¼1

Pnc
k¼1rkik

2
ki is added to obtain a system

of equations with a non-zero diagonal block for the Lagrange mul-
tiplier degrees of freedom. The regularization parameters are cho-
sen to be rki � cki

kki
such that the regularization term remains small

compared to the Lagrange multiplier and penalty terms of the aug-
mented Lagrangian method. With the regularization term intro-
duced, we ensure that the system of equations is well-
conditioned and can be solved for velocity and pressure fields only
by explicitly expressing the increments of the Lagrange multipliers
as a function of the increments of velocity and pressure. This will be
further explained later.

The Neumann boundary generally consists of the outlets, and if
the deformability of the blood vessels is considered, the lateral
surface of the domain is added to the Neumann boundary [6].
For outlet boundary conditions, resistance, impedance, and
three-element Windkessel models are implemented using the
Coupled Multidomain Method [51,52]. In the Coupled Multido-
main Method, operators M ¼ ½M

� m; ~Mc� and H ¼ ½H
�m; ~Hc� are de-

fined to represent the traction tensor and velocity at the outlet
boundaries as follows:

ð�p I
�
þ s
�
ÞjCh
� M

� mð~v ;pÞ þ H
�m

h i
Ch

~v jCh
� ~Mcð~v ;pÞ þ ~Hc

h i
Ch

ð10Þ

These operators M and H are defined from analytic models repre-
senting downstream vasculatures. The resulting weak form
becomes:



82

126

0 1.05

Pr
es

su
re

 (m
m

H
g)

Time (s)

Pressure waveforms at the inlet

With no constraint

With an outlet constraint

Fig. 2. Comparison of inlet pressure waveforms of a straight cylindrical model with
a Womersley inlet velocity and impedance outlet boundary conditions for
simulations with and without constraints on the shape of the outlet velocity profile.

3554 H.J. Kim et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 3551–3566
BGð~w;q; ~dk1; . . . ; ~dknc ;~v;p;~k1; . . . ;~knc Þ

¼
Z

X

~w � ðq~v ;t þq~v �r~v �~f Þþr~w : ð�p I
�
þs
�
Þ

n o
d~x

�
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X
rq �~v d~x�

Z
Ch

~w � ðM
� mð~v;pÞþH

�mÞ �~nds

þ
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Ch

qð~Mcð~v;pÞþ~HcÞ �~ndsþ
Z

Cg

q~v �~nds

þ
Pnsd

i¼1

Pnc

k¼1
fkki � ðrkidkki� dckið~w;~v;~x; tÞÞgþ

Pnsd

i¼1

Pnc

k¼1
dkki � ðrkikki� ckið~v;~x; tÞÞ

þ
Pnsd

i¼1

Pnc

k¼1
jki � ckið~v;~x; tÞdckið~w;~v;~x; tÞ ¼ 0: ð11Þ

For the vessel wall boundary, the Coupled Momentum Method can
be utilized to model the fluid–solid interaction between blood flow
and elastic vessel walls [6].

2.3. Velocity profile function

The shape of the normal velocity profile of outlet boundary Chk

is determined by the function Ukð~vð~x; tÞ;~x; tÞ. Function
Ukð~vð~x; tÞ;~x; tÞ is a function of the flow rate and the prescribed
shape of the normal velocity profile. In this function, the flow rate
is unknown and is derived through the interactions between the
three-dimensional domain and the downstream domains. How-
ever, the shape of the velocity profile, uk, can be determined once
the geometry of the constrained surface is known. Thus, function
Ukð~vð~x; tÞ;~x; tÞ can be determined using the known profile function
uk and an unknown flow rate. Profile function uk is scaled depend-
ing on the resulting flow rate:

Ukð~vð~x; tÞ;~x; tÞ ¼

R
Chk

~v �~ndsR
Chk

ds
ukð~x; tÞ: ð12Þ
Fig. 1. Velocity profiles at five different axial locations for five different time points of
boundary conditions. Note that for all axial locations except the outlet, the velocity pro
In this study, we ensure that the boundary face is circular and im-
pose an axisymmetric profile function [20] as the following:

uðrÞ ¼ nþ 2
n

1� r
R

� �n
� �

; ð13Þ

where n is an integer greater than one, r is the distance between a
point on the face and the center and R is the radius of the face. Note
that when n ¼ 2, the profile function is parabolic. The order of the
profile function can be optimized to give a minimal difference be-
tween the profile function and a Womersley profile [55] based on
the geometry and pulsatility of the inflow for the problem. The
assumption of circular faces and the above choice of profile function
were made without loss of generality.
a straight cylindrical model with a Womersley inlet velocity and impedance outlet
files for the unconstrained and constrained solutions are indistinguishable.
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2.4. Finite element discretization

In this study, we employ a stabilized semi-discrete finite ele-
ment method, based on the ideas developed in Brooks and Hughes
A
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Sm
h ¼ ~v j~vð�; tÞ 2 H1ðXÞnsd ; t 2 ½0; T�;~vj~x2Xe

2 PmðXeÞnsd ;~vð�; tÞ ¼ ~̂g on Cg

n o
;

Wm
h ¼ ~wj~wð�; tÞ 2 H1ðXÞnsd ; t 2 ½0; T�; ~wj~x2Xe

2 PmðXeÞnsd ; ~wð�; tÞ ¼~0 on Cg

n o
;

Pm
h ¼ pjpð�; tÞ 2 H1ðXÞ; t 2 ½0; T�; pj~x2Xe

2 PmðXeÞ
n o

;

~k1ðtÞ;~k2ðtÞ; . . . ;~knc ðtÞ 2 ðL
2ð0; TÞÞnsd ;

d~k1ðtÞ; d~k2ðtÞ; . . . ; d~knc ðtÞ 2 ðL
2ð0; TÞÞnsd ;

~jk 2 Rnþ
sd ; Penalty numbers where k ¼ 1; . . . ; nc ;

~rk 2 Rnþ
sd ; Regularization parameters such that ~rkj j � 1; k ¼ 1; . . . ;nc ;

ð14Þ

where ~̂g is an approximation of~g in a discretized spatial domain and
PmðXeÞ is the polynomial space of order m in Xe (in this study, m is
equal to one).

The Galerkin formulation of the problem is:
Find ~v 2Sm

h , p 2 Pm
h and ~k1;~k2; . . . ;~knc 2 ðL

2ð0; TÞÞnsd such that
for any ~w 2Wm

h , q 2 Pm
h and d~k1; d~k2; . . . ; d~knc 2 ðL

2ð0; TÞÞnsd the fol-
lowing is satisfied:
Fig. 5. Through-plane velocity contours at infra-celiac, supra-renal, infra-renal, mid-aorta
measured inlet flow and impedance outlet boundary conditions. Results are shown for the
with (rows 2, 4, 6) constraints on the shape of the outlet velocity profiles.
BGð~w;q;d~k1; . . . ;d~knc ;~v;p;~k1; . . . ;~knc Þ

¼
Z

X

~w � ðq~v ;t þq~v � r~v �~f Þ þr~w : ð�p I
�
þs
�
Þ

n o
d~x

�
Z

X
rq �~v d~x�

Z
Ch

~w � ðM
� mð~v ;pÞ þH

�mÞ �~ndsþ
Z

Ch

qð~Mcð~v;pÞ

þ~HcÞ �~ndsþ
Z

Cg

q~v �~nds

þ
Pnsd

i¼1

Pnc

k¼1
fkki � ðrkidkki � dckið~w;~v ;~x; tÞÞgþ

Pnsd

i¼1

Pnc

k¼1
dkki � ðrkikki � ckið~v;~x; tÞÞ

þ
Pnsd

i¼1

Pnc

k¼1
jki � ckið~v ;~x; tÞdckið~w;~v ;~x; tÞ ¼ 0: ð15Þ

The Stabilized formulation is:
Find ~v 2Sm

h , p 2 Pm
h and ~k1;~k2; . . . ;~knc 2 ðL

2ð0; TÞÞnsd such that
for any ~w 2Wm

h , q 2 Pm
h and d~k1; d~k2; . . . ; d~knc 2 ðL

2ð0; TÞÞnsd the fol-
lowing is satisfied:
, and supra-bifurcation locations of a subject-specific abdominal aorta model with a
se five axial locations at three time points for simulations without (rows 1, 3, 5) and



Fig. 6. In-plane velocity vectors and magnitude at infra-celiac, supra-renal, infra-renal, mid-aorta, and supra-bifurcation locations of a subject-specific abdominal aorta
model with a measured inlet flow and impedance outlet boundary conditions. Results are shown for these five axial locations at three time points for simulations without
(rows 1, 3, 5) and with (rows 2, 4, 6) constraints on the shape of the outlet velocity profiles.
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Gð~w; q; d~k1; . . . ; d~knc ;~v; p;~k1; . . . ;~knc Þ
¼ BGð~w; q; d~k1; . . . ; d~knc ;~v ;p;~k1; . . . ;~knc Þ

þ
Xnel

e¼1

Z
Xe

ð~v � rÞ~w � sM
~Lð~v ;pÞ þ r � ~wsCr �~v

n o
d~x

þ
Xnel

e¼1

Z
Xe

~w � ðq~̂v � r~vÞ þ ð~Lð~v; pÞ � r~wÞ � ð�s~Lð~v ;pÞ � r~vÞ
n o

d~x

þ
Xnel

e¼1

Z
Xe

rq � sM

q
~Lð~v ;pÞd~x ¼ 0; ð16Þ

where ~L ¼ q~v ;t þ q~v � r~v þrp�r � s
�
�~f and ~̂v ¼ � sM

q
~L.

The stabilization parameters are defined as follows:

sM ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2c1=DtÞ2 þ~v � q
�
~v þ c2m2ðq

�
: q
�
Þ

r ;

sC ¼
qCsC

8sMtrðq
�
Þc1

and �s ¼ sMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~L � q

�
�~L

r :

ð17Þ
Here, c1 and c2 are constants derived from the one-dimensional sca-
lar model problem of the advection–diffusion equation, CsC , is a
scale factor for sC , and q

�
is the covariant metric tensor:

q
�
¼ ð~f;~xÞT~f;~x: ð18Þ
2.5. Linearization and time integration algorithms

We can separate the residuals defined in Eq. (16) into momen-
tum, continuity and Lagrange multiplier residuals as follows:

Rm ¼
Z

X

~w � ðq~v ;t þ q~v � r~v �~f Þ þr~w : ð�p I
�
þ s
�
Þ

n o
d~x

�
Z

Ch

~w � ðM
� mð~v ; pÞ þ H

�mÞ �~nds

�
Xnsd

i¼1

Xnc

k¼1

kki � dckið~w;~v ;~x; tÞÞ þ
Xnsd

i¼1

Xnc

k¼1

jki � ckið~v ;~x; tÞdckið~w;~v ;~x; tÞ



Fig. 7. Mean wall shear stress and oscillatory shear index of a subject-specific
abdominal aorta model for simulations with and without constraints on the shape
of the outlet velocity profiles.
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þ
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e¼1
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n o
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þ
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e¼1
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n o
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ð19Þ
Rc ¼ �

Z
X
rq �~v d~xþ

Z
Ch

qð~Mcð~v ; pÞ þ ~HcÞ �~ndsþ
Z

Cg

q~v �~nds

þ
Xnel

e¼1

Z
Xe

rq � sM

q
~Lð~v ; pÞ~dx ¼ 0; ð20Þ

Rk ¼
Xnsd

i¼1

Xnc

k¼1

kki � rkidkki þ
Xnsd

i¼1

Xnc

k¼1

dkki � ðrkikki � ckið~v ;~x; tÞÞ ¼ 0: ð21Þ

Linearization of the residuals with respect to increments in
velocity, pressure and Lagrange multipliers results in the following
system of linear algebraic equations:

@Rm
@~v ;t

@Rm
@p;t

@Rm

@~k;t

@Rc
@~v ;t

@Rc
@p;t

@Rc

@~k;t

@Rk
@~v ;t

@Rk
@p;t

@Rk

@~k;t

26664
37775

tnþ1

D~v ;tnþ1

Dp;tnþ1

D~k;tnþ1

264
375 ¼ �Rm

�Rc

�Rk

264
375

tnþaf

: ð22Þ

Here, af is a parameter of a Generalized-a method [4,22].
Since the Lagrange multipliers are introduced as additional un-

knowns, there is a change in the structure of the system of equa-
tions. However, because the constraint function only affects the
velocity profiles on the constrained surfaces and does not affect
the continuity residuals, we have the following:

@Rk

@p;t
¼ @Rc

@~k;t
¼ 0:

Furthermore, the momentum residuals linearized with the incre-
ments of Lagrange multipliers are identical to the Lagrange multi-
plier residuals linearized with the increments of velocity, thus, the
following holds:

@Rm

@~k;t
¼ @Rk

@~v ;t

� �T

:

We can write the system of linear algebraic equations as follows:

K �DT LT

D C 0
L 0 M

264
375 D~v ;tnþ1

D~p;tnþ1

D ~~k;tnþ1

2664
3775 ¼

�Rm

�Rc

�Rk

264
375

tnþaf

; ð23Þ

where D~p;tnþ1 ¼
Dp;tnþ1

af c
and D ~~k;tnþ1 ¼

D~k;tnþ1
af c

. c is a parameter of a Gener-

alized-a method [4,22]. Also, K � @Rm
@~v ;t

			
tnþ1

, D � @Rc
@~v ;t

			
tnþ1

, C � af c @Rc
@p;t

			
tnþ1

,

L � @Rk
@~v ;t

			
tnþ1

, and M � af c @Rk

@~k;t

			
tnþ1

.

The increments of Lagrange multipliers can be computed either
simultaneously with the increments of velocity and pressure or
decoupled from the system of equations if the same numerical val-
ues for regularization parameters ~rk are used for all the con-
strained outlets where the matrix M reduces to an identity
matrix with scaling constant � (M ¼ �I) where � ¼ 2af cr, thus
making r a single regularization parameter.

Using the latter approach, we decouple the increments of the
Lagrange multipliers from the system of equations (23) and solve
for the increments of velocity and pressure only. We can rewrite
the system of equations (23) as the following:

K LT

L �I

" #
D~d;tnþ1

D ~~k;tnþ1

24 35 ¼ � b~R
�Rk

" #
tnþaf

; where K ¼ K �DT

D C

" #
;

D~d;tnþ1 ¼
D~v ;tnþ1

D~p;tnþ1

" #
;

b~Rjtnþaf
¼

Rm

Rc


 �
tnþaf

; L ¼ L 0½ �: ð24Þ
As explained above, the regularization terms are introduced in or-
der to circumvent the formulation of an ill-conditioned system of
equations (24). We can express the increments of the Lagrange mul-
tipliers as a function of the increments of velocity and pressure as
follows:

D ~~k;tnþ1 ¼
1
�
�Rkjtnþaf

� LD~d;tnþ1

� �
: ð25Þ

Now, we can solve for the increments of velocity and pressure only
by using the following system of equations:

K � 1
�

LT L
� �

D~d;tnþ1 ¼ �
b~Rjtnþaf

þ 1
�

LT Rkjtnþaf
: ð26Þ

This system of equations is solved using two sequential linear
iterative methods: the Conjugate Gradient method (CG) and a ma-
trix-free Generalized Minimal RESidual method (GMRES). When
computing preconditioning for these two linear iterative methods,
additional contributions due to the constraints are considered by
adding absolute values of the diagonal components of these addi-
tional terms. In the CG method step, approximate pressure values
are obtained by solving a discrete pressure Poisson equation
[16,54]. Then, using the GMRES method, accurate velocity and pres-
sure values are computed. This algorithm has demonstrated excel-
lent scalability even with the addition of constraint equations. We
advance the solutions in time using a Generalized-a method for
velocities [4,22] and a Backward Euler method for pressure and
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Lagrange multipliers [22]. The steps of the linearization and time
stepping algorithms are summarized below.

1. Set initial conditions: ~vð~x; t0Þ; pð~x; t0Þ;~kkðt0Þ where k ¼ 1; . . . ;nc .
2. Time step loop: from tn to tnþ1 where n ¼ 0;1; . . . ;N � 1.Nonlin-

ear iteration loop: from i ¼ 0;1; . . . ; Imax iteration � 1.
(a) Predictor phase
Fig. 8.
profile
on the
~v ð0Þnþ1 ¼ ~vn; ~v ð0Þ;tnþ1
¼ c� 1

c
~v ;tn ;

pð0Þnþ1 ¼ pn; pð0Þ;tnþ1
¼ 0;

~kð0Þk;nþ1 ¼~kn; ~kð0Þ;tnþ1
¼ 0:
(b) Multi-corrector phase
i

~v ðiþ1Þ
nþaf
¼ ~vn þ af ð~v ðiÞnþ1 �~vnÞ; ~v ðiþ1Þ

;tnþam
¼ ~v ;tn þ amð~v ðiÞ;tnþ1

�~v ;tn Þ;

pðiþ1Þ
nþaf
¼ pn þ ðp

ðiÞ
nþ1 � pnÞ; pðiþ1Þ

;tnþam
¼ 0;

~kðiþ1Þ
k;nþaf

¼~kk;n þ ð~kðiÞk;nþ1 �~knÞ; ~kðiþ1Þ
k;tnþam

¼ 0:" #

(c) Linear solver: solve for D~dðiþ1Þ

;tnþ1
¼

D~v ðiþ1Þ
;tnþ1

D~pðiþ1Þ
;tnþ1

and D ~~kðiþ1Þ
;tnþ1

(i) Solve ðK � 1
� LT LÞD~d;tnþ1 ¼ �

b~Rjtnþaf
þ 1
� LT Rkjtnþaf

A. Compute preconditioning
B. CG method: solve for D~pðiþ1Þ

;tnþ1
using a discrete pressure

Poisson equation [16,54]
C. GMRES method: solve for D~dðiþ1Þ

;tnþ1
using

ðK � 1
� LT LÞD~d;tnþ1 ¼ �

b~Rjtnþaf
þ 1
� LT Rkjtnþaf

(ii) Update D ~~kðiþ1Þ
;tnþ1

using D ~~k;tnþ1 ¼ 1
� ð�Rkjtnþaf

� LD~d;tnþ1 Þ
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:

3. Calculate residuals and check for convergence.
4. Conclude at specified time step tN .

3. Results

For the simulations presented here, we assumed blood can be
approximated as an incompressible Newtonian fluid with a density
of 1.06 g/cm3 and a dynamic viscosity of 0.04 g/cm s. Furthermore,
we assumed that the vessels are rigid and enforced the no-slip con-
dition at the luminal surface. We utilized anisotropic finite element
mesh generation techniques with refinement on exterior surfaces
and five boundary layers [37]. The solutions were run until the rel-
ative pressure fields and the relative Lagrange multipliers did not
change more than 1.0% compared to the solutions from the previ-
ous cardiac cycle.

For the inlet boundary conditions, we assigned Womersley
velocity profiles derived from flow rate data obtained using cine
phase contrast magnetic resonance imaging (cine PC-MRI). For
the outlets, we prescribed impedance spectra generated either
from fractal networks of linear elastic vessels [32,41] or from
three-element Windkessel models. For the simulations with sub-
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Fig. 9. Comparison of mean wall shear stress and oscillatory shear index of an
idealized bifurcation model where daughter vessels are truncated increasingly
closer to bifurcation. A Womersley velocity profile is prescribed at the inlet. At the
outlet boundaries, impedance boundary conditions are used with constraints on the
shape of the velocity profiles.
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ject-specific computer models, a target flow distribution to each
outlet was determined based on experimental measurements and
literature data [19,30,57]. Impedance spectra were adjusted to
match this target flow distribution and the measured brachial
pulse pressure by adjusting the parameter values of the three-ele-
ment Windkessel models [26,42]. Outlet velocity profile shapes
will be chosen to match the shape of the inlet profile.

3.1. A comparison study using a straight cylindrical model

We first applied this method to a straight cylindrical blood ves-
sel model which represents the abdominal aorta of a normal sub-
ject. This problem does not require constraints to obtain a
solution and therefore is an appropriate example for illustrating
the differences between a simulation with and without constraints
on the shape of the velocity profile. The nominal radius and vessel
length were 1 cm and 22 cm, respectively. For the inlet, we imple-
mented a Womersley velocity profile of a volumetric flow wave-
form with a mean flow of 3.38 L/min and a cardiac cycle of
1.05 s. For the outlet, we assigned an impedance boundary condi-
tion representing the arterial system below the abdominal aorta
of a normal subject. The numerical solutions were obtained using
a 694,798 element and 124,959 node mesh with a time step size
of 1.0 ms for a total of four cardiac cycles.

The shape of the velocity profile on the outlet was constrained
using the augmented Lagrangian method. An axisymmetric profile
shape with a profile order of five was chosen based on the param-
eters of the Womersley inlet velocity profile. Finally, the same
problem was computed without a constraint on the outlet.

In Fig. 1, the shapes of the velocity profiles from the uncon-
strained and constrained simulations are compared at five differ-
ent axial locations. Note that for all axial locations except the
outlet, the velocity profiles for the unconstrained and constrained
solutions are indistinguishable. When the constraint was applied,
the same shape was maintained at the outlet boundary regardless
of the magnitude of outlet flow. Flow rate at the outlet surface is
not determined a priori but derived naturally through the weak
enforcement of the impedance outlet boundary condition.

The inlet pressure waveforms of the simulations performed
with and without an outlet velocity profile constraint are com-
pared in Fig. 2. The relative difference of the pressure waveform
at the inlet was less than 0.30%. The relative difference in flow
and pressure waveforms at the outlet was less than 0.10% and
0.19%, respectively. Similarly, mean wall shear stress and the oscil-
latory shear index showed little difference except in the immediate
vicinity of the outlet (Fig. 3). In Fig. 3, the same problem was run
with a different profile order (n = 2, 5, 8) to demonstrate that the
choice of a profile order is irrelevant to obtain solutions as long
as the constrained outlet is far enough from the area of interest.

3.2. A comparison study using a subject-specific abdominal aorta
model

To further assess the effects of constraints on the shape of the out-
let velocity profiles, we analyzed a subject-specific abdominal aorta
model (Fig. 4). Once again, this problem does not require constraints
to obtain a solution and is used to further illustrate the differences
between simulations with and without constraints on the shape of
the velocity profiles for a case with multiple outlets. The model
starts from the supraceliac level of the abdominal aorta and includes
the celiac, superior mesenteric, left renal, right renal, left external
iliac, right external iliac, left internal iliac, and right internal iliac
arteries. The geometry was obtained from magnetic resonance
imaging data. For the inlet, we assigned a Womersley velocity pro-
file. The cardiac cycle of the inlet waveform was 1.05 s. For the out-
lets, we prescribed impedance spectra generated from Windkessel
models. The solutions were obtained using a 1,943,397 element
and 353,314 node mesh with a time step size of 1.0 ms for a total
of five cardiac cycles. We examined the worst-case scenario when
all the outlets of the model were constrained. An axisymmetric pro-
file function with a profile order of five was chosen based on the
parameters of the inlet Womersley velocity profile.

The relative difference in the inlet and outlet pressure between
the constrained and unconstrained methods was less than 1.57%.
Through-plane velocity contours are compared in Fig. 5. Cut-planes
are generated by cutting the computational domain perpendicular
to the path line of the abdominal aorta at five different locations:
infra-celiac, supra-renal, infra-renal, midway between the renal
arteries and iliac bifurcation, and supra-bifurcation. We observe
that there is a very small difference in the through-plane velocity
contours of the abdominal aorta. The differences observed between
the two solutions are comparable to cycle-to-cycle variations of
either the unconstrained or the constrained method. The same
findings hold for the in-plane velocity components (Fig. 6).
Although constraints are imposed on all the outlets, they do not
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affect the velocity field in the abdominal aorta. Mean wall shear
stress and oscillatory shear index are compared for the uncon-
strained and constrained methods in Fig. 7. Similarly to the straight
cylinder simulation, there is little difference in the wall shear stress
except in the branch vessels.

3.3. An idealized bifurcation model

An idealized model approximating the bifurcation of the infra-
renal aorta into the common iliac arteries was run with constraints
on both outlets to study how close the outlet vessels can be trun-
cated without affecting the velocity and pressure fields above the
bifurcation. The parent vessel had a nominal radius of 0.67 cm
and a length of 13.86 cm. The daughter vessels were constructed
to be symmetric with a bifurcation angle of 90�, a radius of
0.47 cm and an initial length of 5.73 cm (Fig. 8). We truncated
these outlets until we observed changes in the wall shear stress
field above the bifurcation. For the inlet, we assigned a Womersley
velocity profile. Note that the prescribed inflow waveform had
significant retrograde flow in diastole (Fig. 8). For the outlets, we
prescribed impedance spectra which were generated from a
three-element Windkessel model. Outlets were constrained with
a profile order eleven to approximate the inlet Womersley velocity
profile. Initially, the solutions were obtained using a 667,533 ele-
ment and 121,800 node mesh. The second model was constructed
with a shorter daughter vessel length of 2.73 cm. The solutions
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Fig. 10. Boundary conditions for a subject-specific thoracic aorta model. A Womersley ve
in panel (A). At the outlet boundaries, a three-element Windkessel boundary conditions
modulus and phase are shown from 0 to 20 Hz.
were obtained using a 538,932 element and 98,422 node mesh. Fi-
nally, the third model was constructed with a daughter vessel
length of 1.83 cm and the solutions were obtained using a
513,664 element and 93,837 node mesh. All the simulations were
run with a time step size of 1.0 ms for a total of six cardiac cycles.
Mesh generation was performed with the same mesh parameters
so differences in number of nodes and elements reflect differences
in the size of the domain.

In Fig. 8, the flow and pressure waveforms of the inlet and one
of the outlets are plotted. Due to the symmetry of the problem,
both outlets have the same flow and pressure waveforms. Note
that both the inlet and the outlet have significant retrograde flow
in diastole. This significant retrograde flow would invariably result
in divergence with an unconstrained method, however with the
constraints on both outlets, the simulations were successfully
run. Furthermore, even though we truncated the outlets very close
to the bifurcation for the third model, the simulation did not di-
verge. When we compared the inlet and outlet pressure waveforms
for all three models, the relative inlet and outlet pressure differ-
ences were less than 2.23% and 0.21% respectively. Lagrange mul-
tipliers for the normal constraint and the in-plane constraints are
also plotted in Fig. 8. For the in-plane constraints, the magnitude
of the two in-plane constraints is plotted. We can observe that
although there is little change in flow and pressure fields, Lagrange
multipliers do not preserve the same values but increase for the
models with a shorter daughter vessel length to maintain the same
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locity profile is prescribed at the inlet (A) to achieve the volumetric flow rate shown
are used to generate the impedance spectra shown in (B)–(F). Note that impedance
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velocity profiles on the outlets. Lagrange multipliers can be re-
garded as an artificial force required to maintain a desired shape
of the velocity profiles. A model with a shorter daughter vessel
length requires a bigger force to maintain the same velocity profile.

To study how the early truncation affects the velocity and pres-
sure fields above the bifurcation, we show mean wall shear stress
and oscillatory shear index of three different models (Fig. 9). For
the first two models, little difference is observed in the mean shear
stress and oscillatory shear index. However, the third model exhib-
its differences with the initial model in mean shear stress and
oscillatory shear index. Although all the models show little differ-
ence in velocity and pressure fields at the inlet and both outlets,
early truncations such as the third model affect the velocity and
pressure fields above the bifurcation. However, up to the second
model which has a length-to-radius ratio of 5.81, the velocity
and pressure fields above the bifurcation are preserved.

3.4. A subject-specific thoracic aorta model

We applied our new method to a subject-specific thoracic aorta
model of an eleven-year-old male subject obtained from magnetic
resonance imaging data. This model starts from the root of the
aorta, ends above the diaphragm, and includes the following upper,
branch vessels: right subclavian, left subclavian, right carotid, and
left carotid arteries. The solutions were obtained using a 1,916,167
element and 345,069 node mesh with a time step size of 0.952 ms
for six cardiac cycles. The shape of the velocity profiles of all the
outlets was constrained to have an axisymmetric shape with a pro-
file order seven to minimize the differences between the pre-
scribed profile function and a fully developed Womersley
velocity profile based on the inlet flow rate.
Fig. 11. Velocity vectors at the descending thoracic aorta (F) and right coronary artery (C)
with constraints on the shape of the outlet velocity profiles. Note that the simulation w
indicated in a ‘x’.
For the inlet boundary condition, we used a Womersley velocity
profile and for the outlet boundary conditions, we implemented
three-element Windkessel models which represent the down-
stream vasculature not included in the computational domain.
The inflow waveform and impedance spectra generated with a
three-element Windkessel model for each outlet are shown in
Fig. 10. The measured range of brachial pressure of this subject
was 62.5 mmHg in diastole and 106 mmHg in systole. The com-
puted pressure range of the aorta was from 63.0 to 105.0 mmHg.
Flow distribution also matched experimental results with a rela-
tive difference less than 0.62%.

The solution to this problem diverged without constraints on
the outlet boundaries likely due to the fact that all the outlets
and the inlet had retrograde flow in early diastole. Prior to solution
divergence, the velocity vectors at the outlets became highly irreg-
ular (Fig. 11). This simulation was run successfully with constraints
on all the outlets.

Fig. 12 shows flow and pressure waveforms of the inlet and the
outlets for one cardiac cycle. For the outlets, Lagrange multipliers
are plotted. For the in-plane constraints, the magnitude of the
two in-plane constraints is plotted. With high flow rate, a small
force is sufficient to preserve the shape of the velocity profiles be-
cause of the inertia of blood flow. However, for a small amount of
outflow, especially in the deceleration phase, a large force is re-
quired to maintain the same shape. Therefore, the Lagrange multi-
pliers have large values when there is either a small amount of
outflow or retrograde flow, and become smaller when there is po-
sitive and high outflow. Note that depending on the location of the
outlets, the magnitude of the Lagrange multipliers change. For
example, the values of the Lagrange multipliers of the right carotid
artery are bigger than the values of the left carotid artery although
of a subject-specific thoracic aorta model. Simulations were performed without and
ithout constraints on the shape of the outlet velocity profiles diverged at the point



Fig. 12. Flow, pressure and Lagrange multipliers of a subject-specific thoracic aorta model. Simulations were performed with constraints on the shape of the outlet velocity
profiles. Note that the inlet and all the outlets have reverse flow in early diastole.
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they have the same flow because the right carotid artery does not
have as long a vessel as the left carotid artery to fully develop flow.
Volume rendered velocity magnitudes are shown for peak systole,
late systole, and mid-diastole and demonstrate complex flow fea-
tures in the thoracic aorta (Fig. 13). Due to the geometry of the tho-
racic aorta, the flow develops helical structures as it travels to the
upper branch vessels and descending thoracic aorta. Helical flow
structures are preserved up to the immediate vicinity of the outlet
surfaces. Wall shear stresses at the same time points are also plot-
ted in Fig. 14. We can observe complex wall shear stress fields due
to the complex flow structures.

4. Discussion

We have successfully developed and implemented a new
method to constrain the shape of the velocity profiles at the
interface between a three-dimensional computational domain
and zero-dimensional and one-dimensional analytic models.
We have demonstrated that this method exhibits solutions that
differ from unconstrained solutions only in the immediate
vicinity of the constrained outlets. As long as the constrained
outlet is far enough from the domain of interest, the constraints
did not affect velocity and pressure fields in the domain of
interest. This method can also be used for three-dimensional
computations coupled to one-dimensional computational
models.

In this method, we used the Coupled Multidomain Method to
assign physiologic boundary conditions. There are other ap-
proaches to assign physiologic boundary conditions. Some studies
use do-nothing boundary conditions [18] and assign weak pres-
sure or flux boundary conditions. These boundary conditions are
similar to the Coupled Multidomain Method and do not resolve
problems in blood flow simulations associated with complex flow
features and geometry. Some boundary conditions prescribe



Fig. 13. Volume rendered velocity magnitude at peak systole, late systole, and mid-diastole of a subject-specific thoracic aorta model with a prescribed inlet flow and three-
element Windkessel outlet boundary conditions and constraints on the shape of the outlet velocity profiles.
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either flow rate or pressure using the Augmented formulation
[8,49,50] or control theory [11]. However, these approaches are
based on the do-nothing approach and thus result in the same
natural boundary conditions. Although Gresho et al. [16] demon-
strated that these natural boundary conditions are sufficient out-
let boundary conditions for incompressible fluid flow, this
boundary condition is inadequate for simulations of blood flow
in the cardiovascular system when a computational domain is
truncated shortly after a bifurcation or where a computational
domain has complex flow characteristics such as retrograde flow
near the outlets. As our proposed method described herein ad-
dresses this issue, it greatly expands the range of problems that
can be solved using three-dimensional finite element simulations
of blood flow.

We have demonstrated that this method stabilizes unstable
problems which are intractable with unconstrained methods.
Additionally, the computation cost is comparable to
unconstrained methods. Simulation time of the constrained
method was compared with the unconstrained method where
possible. For the simulations of the straight cylindrical model,
two dual cores of a Hitachi Blade Symphony system (Itanium
2 Montecito, 1.6 GHz, 24 MB L3 cache) were used for both
methods. With an unconstrained method, the simulation ran
for 19.1 h to finish four cardiac cycles. With the constrained
method, the same simulation took 20.8 h to finish the same
number of cardiac cycles. For a single constraint case, simula-
tion time increased 1.1 times compared to an unconstrained
method. When constraining two outlets as in the idealized
bifurcation model simulations, the unconstrained method with
the initial model took 11.3 h to finish four cardiac cycles with
four dual cores of a Hitachi Blade Symphony system whereas
the constrained method ran for 13.6 h to finish the same num-
ber of cardiac cycles. The simulation time was 1.2 times greater
for a two-constraint case. Finally, when constraining all the out-
lets as in the simulations of the subject-specific abdominal aor-
ta model, the unconstrained method took 50.9 h to finish five
cardiac cycles with six dual cores of the Hitachi Blade Sym-
phony system whereas the constrained method ran for 57.0 h.
When constraining all the outlets, the simulation time was
1.1 times greater compared to an unconstrained method. It
should be noted that the addition of constraints does not seem
to affect the scalability of our algorithm which is near-perfect
up to thousands of processors. The computational cost is man-
ageable and necessary as for some class of problems, i.e., those
with retrograde diastolic flow, complex flow structures in the
neighborhood of outlets or early truncations, an unconstrained
approach usually fails.

The increased computational cost due to the addition of
constraints on the shape of velocity profiles is primarily from
the additional calculations required to formulate the equa-
tions. The additional constraint terms are nonlinear and up-
dated before each nonlinear iteration using the most recent
velocity and pressure values as well as before each linear
iteration using the most recent increments of velocity and
pressure.

Finally, the method described here can be extended to other
flow problems where weak pressure or flux boundary conditions
are implemented to obtain a robust algorithm with better conver-
gence. This method can also be applied at the inlet of three-
dimensional computational models to couple the inlet to re-
duced-order models, for example, a lumped-parameter heart
model.



Fig. 14. Wall shear stress at peak systole, late systole, and mid-diastole of a subject-specific thoracic aorta model with a prescribed inlet flow and three-element Windkessel
outlet boundary conditions and constraints on the shape of the outlet velocity profiles.
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